精英家教网 > 高中数学 > 题目详情
5.若$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(3,0)$,则$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 利用查两个向量的数量积的定义,求得cosθ的值,可得$\overrightarrow{a}$、$\overrightarrow{b}$的夹角θ的值.

解答 解:若$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(3,0)$,设$\overrightarrow a,\overrightarrow b$的夹角为θ,则cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|•|\overrightarrow{b}|}$=$\frac{3+0}{2•3}$=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$,
故选:A.

点评 本题主要考查两个向量的数量积的定义,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=$\sqrt{5}$,$\overrightarrow{b}$=(4,2).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$的坐标;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与5$\overrightarrow{a}$+2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(Ⅰ)证明:BD⊥平面ADD1A1
(Ⅱ)证明:CC1∥平面A1BD;
(Ⅲ)若DD1=AD,求直线CC1与平面ADD1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中为真命题的是(  )
A.命题“若x>1,则x2>1”的否命题B.命题“若x>y,则x>|y|”的逆命题
C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2≥1,则x≥1”的逆否命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列变量关系是函数关系的是(  )
A.三角形的边长与面积之间的关系
B.等边三角形的边长与面积之间的关系
C.四边形的边长与面积之间的关
D.菱形的边长与面积之间的关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若x~N(4,1)且f(x<3)=0.0187,则f(x<5)=0.9813.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.P为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}=1(a>2)$上位于第一象限内一点,且$OP=2\sqrt{2}$,令∠POx=θ,则θ的取值范围是(0,$\frac{π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于定义在D上的函数f(x),点A(m,n)是f(x)图象的一个对称中心的充要条件是:对任意x∈D都有f(x)+f(2m-x)=2n,现给出下列三个函数:
(1)f(x)=x3+2x2+3x+4
(2)$f(x)=\frac{1}{x+1}+\frac{1}{x+2}+…+\frac{1}{x+2015}$
(3)$h(x)={log_2}\frac{x}{4-x}$
这三个函数中,图象存在对称中心的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.求函数y=lg(sin2x+2cosx+2)在$x∈[{-\frac{π}{6}\;,\;\;\frac{2π}{3}}]$上的最大值lg4,最小值lg$\frac{7}{4}$.

查看答案和解析>>

同步练习册答案