精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,,侧面为等边三角形,侧棱

(Ⅰ)求证:

(Ⅱ)求证:平面平面

(Ⅲ)求二面角的余弦值

 

【答案】

 

(Ⅰ)证明略

(Ⅱ)证明略

(Ⅲ)

【解析】解:(Ⅰ)设中点为,连结,………… 1分

,所以.

,所以.   ………………… 2分

,所以平面.

平面,所以.   ……… 4分

(Ⅱ)由已知

.

为正三角形,且,∴. …………………… 6分

,所以.

.

由(Ⅰ)知是二面角的平面角.

∴平面平面.        …………………………………………… 8分

(Ⅲ)方法1:由(Ⅱ)知平面.

,连结,则.

是二面角的平面角. ………………………………… 10分

中,易求得.

,所以.   ………………………… 12分

.

即二面角的余弦值为.   …………………………………… 13分

方法2:由(Ⅰ)(Ⅱ)知两两垂直.      ……………………… 9分

为原点建立如图所示的空间直角坐标系.

易知.

.   ……………………… 10分

设平面的法向量为

,则.

∴平面的一个法向量为.    ……………………… 11分

易知平面的一个法向量为.

.  …………………………………… 12分

由图可知,二面角为锐角.

∴二面角的余弦值为.  …………………………………… 13分

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥中,

(Ⅰ)求证

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:2013届广西玉林市高二下学期三月月考文科数学试卷(解析版) 题型:解答题

如图,在三棱锥中,侧面与侧面均为等边三角形,中点.

 (Ⅰ)证明:平面

(Ⅱ)求二面角的余弦值.    (本题12分)

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省台州市高三上学期期末理科数学试卷 题型:解答题

如图,在三棱锥中, 两两垂直且相等,过的中点作平面,且分别交,交的延长线于

(Ⅰ)求证:平面

(Ⅱ)若,求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011---2012学年四川省高二10月考数学试卷 题型:解答题

如图:在三棱锥中,已知点分别为棱的中点.

(Ⅰ)求证:∥平面

(Ⅱ)若,求证:平面⊥平面.

 

 

 

查看答案和解析>>

科目:高中数学 来源:黑龙江省2013届高一下学期期末考试数学(理) 题型:解答题

如图,在三棱锥中,中点。(1)求证:平面

(2)在线段上是否存在一点,使二面角的平面角的余弦值为?若存在,确定点位置;若不存在,说明理由。

 

查看答案和解析>>

同步练习册答案