【题目】已知抛物线: ,定点(常数)的直线与曲线相交于、两点.
(1)若点的坐标为,求证:
(2)若,以为直径的圆的位置是否恒过一定点?若存在,求出这个定点,若不存在,请说明理由.
【答案】(1)证明见解析(2))以为直径的圆恒过定点
【解析】试题分析:(1)要证明∠AED=∠BED,根据直线的倾斜角与斜率的关系,只要证KAE=-KBE即可,讨论直线AB的斜率是否存在,设出直线方程,联立抛物线的方程,运用韦达定理和直线的斜率公式,即可得证;(2)设动直线l方程为x=ty+b,表示出B坐标,联立l与抛物线解析式,消去x得到关于y的方程,根据根的判别式等于0得出t与b的关系式,进而设出A与O的坐标,表示出向量AO与向量BO根据圆周角定理得到两向量垂直,即数量积为0,列出关系式,确定出当m=1,n=0时,上式对任意x∈R恒成立,即可得出使得以AB为直径的圆恒过点O,以及此时O的坐标.
试题解析:(1)(a)当直线垂直于轴时,根据抛物线的对称性有, ;
当直线与轴不垂直时,依题意,
可设直线的方程为(, )
, ,则、两点的坐标
满足方程组
消去并整理,得
,
设直线和的斜率分别为, ,则
,
.
综合(a)(b)可知.
(2)以为直径的圆恒过定点.提示:证明
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从2016年1月1日起全国统一实施全面两孩政策. 为了解适龄民众对放开
生二胎政策的态度,某市选取70后作为调查对象,随机调查了10人,其中打算生二胎
的有4人,不打算生二胎的有6人.
(1)从这10人中随机抽取3人,记打算生二胎的人数为,求随机变量的分布列和数学期望;
(2)若以这10人的样本数据估计该市的总体数据,且以频率作为概率,从该市70后中随机抽取3人,记打算生二胎的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了更好地了解设备改造前后与生产合格品的关系,随机抽取了180件产品进行分析,其中设备改造前的合格品有36件,不合格品有49件,设备改造后生产的合格品有65件,不合格品有30件.根据所给数据:
⑴写出列联表;⑵判断产品是否合格与设备改造是否有关,说明理由.
附: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数().
(1)若函数在定义域上是单调函数,求实数的取值范围;
(2)求函数的极值点;
(3)令, ,设, , 是曲线上相异三点,其中.求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系,将曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线,以坐标原点为极点, 轴的正半轴为极轴,建立极坐标系, 的极坐标方程为.
(Ⅰ)求曲线的参数方程;
(Ⅱ)过原点且关于轴对称的两条直线与分别交曲线于、和、,且点在第一象限,当四边形的周长最大时,求直线的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查高中生的数学成绩与学生自主学习时间之间的相关关系.某重点高中数学教师对高三年级的50名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有22人,余下的人中,在高三年级模拟考试中数学平均成绩不足120分钟的占,统计成绩后,得到如下的列联表:
分数大于等于120分钟 | 分数不足120分 | 合计 | |
周做题时间不少于15小时 | 4 | 22 | |
周做题时间不足15小时 | |||
合计 | 50 |
(Ⅰ)请完成上面的列联表,并判断能否有99%以上的把握认为“高中生的数学成绩与学生自主学习时间有关”;
(Ⅱ)(ⅰ)按照分层抽样,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数是,求的分布列(概率用组合数算式表示);
(ii) 若将频率视为概率,从全校大于等于120分的学生中随机抽取人,求这些人中周做题时间不少于15小时的人数的期望和方差.
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,设为曲线在点处的切线,其中.
(Ⅰ)求直线的方程(用表示);
(Ⅱ)求直线在轴上的截距的取值范围;
(Ⅲ)设直线分别与曲线和射线()交于, 两点,求的最小值及此时的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com