精英家教网 > 高中数学 > 题目详情

【题目】设不等式组 表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于1的概率是(
A.
B.
C.
D.

【答案】A
【解析】解:到坐标原点的距离小于1的点,位于以原点O为圆心、半径为1的圆内,
区域D:设不等式组 表示的平面区域为D,是表示正方形OABC,(如图)
其中O为坐标原点,A(1,0),B(1,1),C(0,1).
因此在区域D内随机取一个点P,
则P点到坐标原点的距离大于1时,点P位于图中正方形OABC内,
且在扇形OAC的内部,如图中的扇形部分
∵S正方形OABC=12=1,S扇形= π12= ,所求概率为P= =
故选:A.

根据题意,在区域D内随机取一个点P,则P点到坐标原点的距离小于1时,点P位于图中正方形OABC内,且在扇形OAC的内部,如图中的扇形部分.因此算出图中扇形部分面积,再除以正方形OABC面积,即可求得本题的答案

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取人进行成绩抽样统计,先将人按进行编号.

(Ⅰ)如果从第行第列的数开始向右读,请你依次写出最先检测的个人的编号;(下面摘取了第行 至第行)

(Ⅱ)抽的人的数学与地理的水平测试成绩如下表:

人数

数学

优秀

良好

及格

优秀

7

20

5

良好

9

18

6

及格

4

成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有人,若在该样本中,数学成绩优秀率为,求的值.

(Ⅲ)将表示成有序数对,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的数对的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为梯形, 为等边三角形, .

(1)求证:平面平面

(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校对甲、乙两个班级进行了物理测验,成绩统计如下(每班50人):

(1)估计甲班的平均成绩;

(2)成绩不低于80分记为“优秀”.请完成下面的列联表,并判断是否有85%的把握认为:“成绩优秀”与所在教学班级有关?

(3)从两个班级,成绩在的学生中任选2人,记事件为“选出的2人中恰有1人来自甲班”.求事件的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图 是圆柱的上、下底面圆的直径, 是边长为2的正方形, 是底面圆周上不同于两点的一点, .

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗原料2千克, 原料3千克;生产乙产品1桶需耗原料2千克, 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗原料都不超过12千克的条件下,生产产品、产品的利润之和的最大值为( )

A. 1800元 B. 2100元 C. 2400元 D. 2700元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:

(1)请根据上表数据在网格纸中绘制散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;

(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取3个点,记落在直线右下方的点的个数为,求的分布列以及期望.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且椭圆过点,记椭圆的左、右顶点分别为,点是椭圆上异于的点,直线与直线分别交于点.

(1)求椭圆的方程;

(2)过点作椭圆的切线,记,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是二次函数,若f(0)=0且f(x+1)﹣f(x)=x+1,求函数f(x)的解析式,并求出它在区间[﹣1,3]上的最大、最小值.

查看答案和解析>>

同步练习册答案