【题目】已知函数 .
(1)当a=1时,求函数f(x)的单调区间;
(2)若﹣1<x<1时,均有f(x)≤0成立,求实数a的取值范围.
【答案】
(1)解:当a=1时,f(x)的定义域为(﹣1,1)∪(1,+∞),
f′(x)= ,
当﹣1<x<0或>3时,f′(x)>0,当0<x<1或1<x<3,f′(x)<0,
所以函数f(x)的增区间为(﹣1,0),(3,+∞),减区间为(0,1),(1,3)
(2)解:f′(x)= ,
当a≤0时,f′(x)>0恒成立,故0<x<1时,f(x)>f(0)=0,不符合题意.
当a>0时,由f′(x)=0,得x1= ,x2= .
若0<a<1,此时0<x1<1,对0<x<x1,有f′(x)>0,f(x)>f(0)=0,不符合题意.
若a>1,此时﹣1<x1<0,对x1<x<0,有f′(x)<0,f(x)>f(0)=0,不符合题意.
若a=1,由(Ⅰ)知,函数f(x)在x=0处取得最大值0,符合题意,
综上实数a的取值为1
【解析】(1)当a=1时,f(x)的定义域为(﹣1,1)∪(1,+∞), 求出f′(x)= ,即可求单调区间;(2)f′(x)= ,
分(1)a≤0,(2)当a>0,讨论单调性及最值即可.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减,以及对函数的最大(小)值与导数的理解,了解求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A.命题“p∧q”为假命题,则p,q均为假命题
B.命题“?x∈(0,+∞),2x>1”的否定是“?x°∈(0,+∞),2x°≤1”
C.命题“若a>b,则a2>b2”的逆否命题是“若a2<b2 , 则a<b”
D.设x∈R,则“x> ”是“2x2+x﹣1>0”的必要而不充分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1 , E、F分别是CC1 , BC的中点.
(1)求证:平面AB1F⊥平面AEF;
(2)求二面角B1﹣AE﹣F的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,曲线C1的参数方程为 (θ为参数),以坐标原点O为极点,x轴的正半轴为极轴,与直角坐标系xoy取相同的单位长度建立极坐标系,曲线C2的极坐标方程为ρ=2cosθ﹣4sinθ.
(1)化曲线C1 , C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)设曲线C2与x轴的一个交点的坐标为P(m,0)(m>0),经过点P作斜率为1的直线,l交曲线C2于A,B两点,求线段AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=sin(2x+ )(x∈[0, ]),若方程f(x)=a恰好有三个根,分别为x1 , x2 , x3(x1<x2<x3),则x1+x2+x3的取值范围是( )
A.[ , )
B.[ , )
C.[ , )
D.[ , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2lnx﹣3x2﹣11x.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若关于x的不等式f(x)≤(a﹣3)x2+(2a﹣13)x﹣2恒成,求整数a的最小值;
(3)若正实数x1 , x2满足f(x1)+f(x2)+4(x +x )+12(x1+x2)=4,证明:x1+x2≥2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面ADC∥平面A1B1C1 , B为线段AD的中点,△ABC≈△A1B1C1 , 四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M为棱A1C1的中点.
(I)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若满足g(x)=﹣1的x有四个,则t的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com