精英家教网 > 高中数学 > 题目详情

【题目】已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于x≥a均有g(x)<f(x),求a的取值范围.

【答案】解:(Ⅰ)f(x)=|x﹣a|﹣|x+b|≤|x﹣a﹣x﹣b|=|a+b|=3,
∵a>0,b>0,∴a+b=3;
(Ⅱ)由(Ⅰ)得,0<a<3,0<b<3,
x≥a,x﹣a≥0,x+b>0,
此时,f(x)=x﹣a﹣x﹣b=﹣3,
若对于x≥a均有g(x)<f(x),
即x2+ax+b﹣3>0在[a,+∞)恒成立,
即x2+ax﹣a>0在[a,+∞)恒成立,
对称轴x=﹣ <0,
故只需a2+a2﹣a>0即可,
解得:a>
<a<3.
【解析】(Ⅰ)根据绝对值的性质求出f(x)的最大值是a+b,从而求出a+b的值即可;(Ⅱ)根据a,b的范围,问题转化为x2+ax﹣a>0在[a,+∞)恒成立,结合函数的单调性求出a的范围即可.
【考点精析】掌握绝对值不等式的解法是解答本题的根本,需要知道含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an},an≥0,a1=0,an+12+an+1﹣1=an2(n∈N).记Sn=a1+a2+…+an . Tn= + +…+ .求证:当n∈N*
(1)0≤an<an+1<1;
(2)Sn>n﹣2;
(3)Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上的动点, 的坐标为 在线段上,满足.

(Ⅰ)求的轨迹的方程.

(Ⅱ)过点的直线交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)=
(Ⅰ)记F(x)=f(x)﹣g(x),判断F(x)在区间(1,2)内零点个数并说明理由;
(Ⅱ)记(Ⅰ)中的F(x)在(1,2)内的零点为x0 , m(x)=min{f(x),g(x)},若m(x)=n(n∈R)在(1,+∞)有两个不等实根x1 , x2(x1<x2),判断x1+x2与2x0的大小,并给出对应的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为 (t为参数),曲线C的极坐标方程是ρ= ,以极点为原点,极轴为x轴正方向建立直角坐标系,点M(﹣1,0),直线l与曲线C交于A、B两点.
(Ⅰ)写出直线l的极坐标方程与曲线C的普通方程;
(Ⅱ)求线段MA、MB长度之积MAMB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(Ⅰ)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(Ⅱ)记甲组学生的成绩分别为x1 , x2 , …,x12 , 执行如图所示的程序框图,求输出的S的值;
(Ⅲ)竞赛中,学生小张、小李同时回答两道题,小张答对每道题的概率均为 ,小李答对每道题的概率均为 ,两人回答每道题正确与否相互独立.记小张答对题的道数为a,小李答对题的道数为b,X=|a﹣b|,写出X的概率分布列,并求出X的数学期望.

附:K2= ;其中n=a+b+c+d
独立性检验临界表:

P(K2>k0

0.100

0.050

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a>0,b>0,函数f(x)=|x﹣a|﹣|x+b|的最大值为3.
(I) 求a+b的值;
(Ⅱ)设函数g(x)=﹣x2﹣ax﹣b,若对于x≥a均有g(x)<f(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体 分别是棱的中点 为棱上一点且异面直线所成角的余弦值为.

1)证明: 的中点

2)求平面与平面所成锐二面角的余弦值.

【答案】1见解析2

【解析】试题分析:1为坐标原点建立如图所示的空间直角坐标系,不妨令正方体的棱长为2利用,解得,即可证得;

2)分别求得平面与平面的法向量,利用求解即可.

试题解析:

1)证明:以为坐标原点,建立如图所示的空间直角坐标系.

不妨令正方体的棱长为2

所以

所以,解得舍去),即的中点.

2)解:由(1)可得

是平面的法向量

..

易得平面的一个法向量为

所以.

所以所求锐二面角的余弦值为.

点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

型】解答
束】
22

【题目】已知椭圆的短轴长为2,且椭圆过点.

1)求椭圆的方程

2)设直线过定点且斜率为若椭圆上存在两点关于直线对称 为坐标原点的取值范围及面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义域为的奇函数.

(1)确定的值;

(2)若,函数,求的最小值;

(3)若,是否存在正整数,使得恒成立?若存在,请求出所有的正整数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案