【题目】设函数f(x)=lnx﹣ax,g(x)=ex﹣3ax,其中a为实数,若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,则a的取值范围是( )
A.( ,+∞)
B.[ ,+∞)
C.(1,+∞)
D.[1,+∞)
【答案】D
【解析】解:f′(x)= ﹣a, 若f(x)在(1,+∞)上是单调减函数,
则f′(x)≤0在(1,+∞)恒成立,
即a≥ 在(1,+∞)恒成立,
故a≥1;
g(x)=ex﹣3ax,g′(x)=ex﹣3a,
若g(x)在(1,+∞)上有最小值,
则g(x)在(1,+∞)先递减再递增,
故y=3a和y=ex在(1,+∞)有解,
而y=ex>e,
故3a>e,a> ,
综上,a≥1,
故选:D.
【考点精析】解答此题的关键在于理解利用导数研究函数的单调性的相关知识,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为 ,且过点( ,1). (Ⅰ)求椭圆C的方程;
(Ⅱ)直线l分别切椭圆C与圆M:x2+y2=R2(其中3<R<5)于A、B两点,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax3+bx2﹣2x+c在x=﹣2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[﹣3,3]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(﹣1,0),B(1,0),直线AM与直线BM相交于点M,直线AM与直线BM的斜率分别记为kAM与kBM , 且kAMkBM=﹣2 (Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过定点F(0,1)作直线PQ与曲线C交于P,Q两点,△OPQ的面积是否存在最大值?若存在,求出△OPQ面积的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两曲线f(x)= x2+ax与g(x)=2a2lnx+b有公共点,且在该点处有相同的切线,则a∈(0,+∞)时,实数b的最大值是( )
A.e
B.2e
C.e
D. e
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥S﹣ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com