精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆,点,过的直线与圆交于点,过做直线平行于点

1)求点的轨迹的方程;

2)过的直线与交于两点,若线段的中点为,且,求四边形面积的最大值.

【答案】1.2

【解析】

1)由题意可得,可得,则的轨迹是焦点为,长轴为的椭圆的一部分,再用待定系数法即可求出方程;

2)由题意设直线方程为,设,联立直线与椭圆的方程,结合韦达定理表示出,可得,设四边形的面积为,则,再根据基本不等式即可求出答案.

解:(1)因为,又因为,所以

所以

所以的轨迹是焦点为,长轴为的椭圆的一部分,

设椭圆方程为

,所以

所以椭圆方程为

又因为点不在轴上,所以

所以点的轨迹的方程为

2)因为直线斜率不为0,设为

,联立整理得

所以

所以

,∴

设四边形的面积为

再令,则单调递增,

所以时,

此时取得最小值,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设命题p:实数x满足x24ax+3a20a0),命题q:实数x满足x25x+60

1)若a1,且pq为真命题,求实数x的取值范围;

2)若pq的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别是,椭圆上短轴的一个端点与两个焦点构成的三角形的面积为

(1)求椭圆的方程;

(2)过作垂直于轴的直线交椭圆两点(点在第二象限),是椭圆上位于直线两侧的动点,若,求证:直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体的底面是边长为的菱形, 底面 ,且.

(1)证明:平面平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}首项a11,前n项和Snan之间满足an

1)求证:数列{}是等差数列

2)求数列{an}的通项公式

3)设存在正数k,使(1+S1)(1+S2)…(1+Sn)≥k对于一切nN*都成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年,新冠状肺炎疫情牵动每一个中国人的心,危难时刻众志成城,共克时艰,为疫区助力.福建省漳州市东山县共101个海鲜商家及个人为缓解武汉物质压力,募捐价值百万的海鲜输送武汉.东山岛,别称陵岛,形似蝴蝶亦称蝶岛,隶属于福建省漳州市东山县,是福建省第二大岛,中国第七大岛,介于厦门市和广东省汕头之间,东南是著名的闽南渔场和粤东渔场交汇处,因地理位置发展海产品养殖业具有得天独厚的优势.根据养殖规模与以往的养殖经验,某海鲜商家的海产品每只质量(克)在正常环境下服从正态分布

1)随机购买10只该商家的海产品,求至少买到一只质量小于265克该海产品的概率;

22020年该商家考虑增加先进养殖技术投入,该商家欲预测先进养殖技术投入为49千元时的年收益增量.现用以往的先进养殖技术投入(千元)与年收益增量(千元).的数据绘制散点图,由散点图的样本点分布,可以认为样本点集中在曲线的附近,且,其中.根据所给的统计量,求y关于x的回归方程,并预测先进养殖技术投入为49千元时的年收益增量.

附:若随机变量,则;

对于一组数据,其回归线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区人民法院每年要审理大量案件,去年审理的四类案件情况如表所示:

编号

项目

收案(件)

结案(件)

判决(件)

1

刑事案件

2400

2400

2400

2

婚姻家庭、继承纠纷案件

3000

2900

1200

3

权属、侵权纠纷案件

4100

4000

2000

4

合同纠纷案件

14000

13000

n

其中结案包括:法庭调解案件、撤诉案件、判决案件等.根据以上数据,回答下列问题.

(Ⅰ)在编号为123的收案案件中随机取1件,求该件是结案案件的概率;

(Ⅱ)在编号为2的结案案件中随机取1件,求该件是判决案件的概率;

(Ⅲ)在编号为123的三类案件中,判决案件数的平均数为,方差为S12,如果表中n,表中全部(4类)案件的判决案件数的方差为S22,试判断S12S22的大小关系,并写出你的结论(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一批用于手电筒的电池,每节电池的寿命服从正态分布(寿命单位:小时).考虑到生产成本,电池使用寿命在内是合格产品.

1)求一节电池是合格产品的概率(结果四舍五入,保留一位小数);

2)根据(1)中的数据结果,若质检部门检查4节电池,记抽查电池合格的数量为,求随机变量的分布列、数学期望及方差.

附:若随机变量服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三1班共有48人,在“六选三”时,该班共有三个课程组合:理化生、理化历、史地政其中,选择理化生的共有24人,选择理化历的共有16人,其余人选择了史地政,现采用分层抽样的方法从中抽出6人,调查他们每天完成作业的时间.

1)应从这三个组合中分别抽取多少人?

2)若抽出的6人中有4人每天完成六科(含语数英)作业所需时间在3小时以上,2人在3小时以内.现从这6人中随机抽取3人进行座谈.

X表示抽取的3人中每天完成作业所需时间在3小时以上的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案