精英家教网 > 高中数学 > 题目详情

点P是椭圆上一点,是椭圆的焦点,且,则__.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,其左、右焦点分别为F1、F2,点P是椭圆上一点,且
PF1
PF2
=0
,|OP|=1(O为坐标原点).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点S(0,-
1
3
)
且斜率为k的动直线l交
椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•扬州模拟)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点为A,左、右焦点为F1,F2,点P是椭圆上一点,
PA
=
3
2
PF1
-
1
2
PF2
,且△PF1F2的三边构成公差为1的等差数列.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若OP=2
7
,求椭圆方程;
(Ⅲ) 若c=1,点P在第一象限,且△PF1F2的外接圆与以椭圆长轴为直径的圆只有一个公共点,求点P的坐标﹒

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点到其左、右两个焦点F1,F2的距离分别为5和1;点P是椭圆上一点,且在x轴上方,直线PF2的斜率为-
15

(Ⅰ)求椭圆E的方程;
(Ⅱ)求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是椭圆上一点,F1F2分别为椭圆的左、右焦点,M为△PF1F2的内心,若S△MPF1=λS△MF1F2-S△MPF2成立,则λ的值为(  )

查看答案和解析>>

同步练习册答案