精英家教网 > 高中数学 > 题目详情
1.已知正六边形A1A2…A6内接于圆O,点P为圆O上一点,向量$\overrightarrow{OP}$与$\overrightarrow{O{A_i}}$的夹角为θi(i=1,2,…,6),若将θ1,θ2,…,θ6从小到大重新排列后恰好组成等差数列,则该等差数列的第3项为$\frac{5π}{12}$.

分析 可假设该等差数列的前三项分别为θ1,θ2,θ3,然后画出图形,通过图形便可看出${θ}_{2}=\frac{π}{3}-{θ}_{1},{θ}_{2}=\frac{π}{3}+{θ}_{1}$,根据该数列为等差数列便可求出θ1,从而求出θ3,即得出该等差数列的第三项的值.

解答 解:设组成等差数列的前三项为:θ1,θ2,θ3,如图,$∠{A}_{1}OP={θ}_{1},{θ}_{1}<\frac{π}{6}$,则:
${θ}_{2}=\frac{π}{3}-{θ}_{1},{θ}_{3}=\frac{π}{3}+{θ}_{1}$;
θ1,θ2,θ3成等差数列;
∴2θ213
即$\frac{2π}{3}-2{θ}_{1}={θ}_{1}+\frac{π}{3}+{θ}_{1}$;
∴${θ}_{1}=\frac{π}{12}$;
${θ}_{3}=\frac{5π}{12}$;
即该等差数列的第三项为$\frac{5π}{12}$.
故答案为:$\frac{5π}{12}$.

点评 考查对圆内接正六边形的认识,数形结合解题的方法,等差数列的概念,及等差中项的概念.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.甲、乙、丙、丁四名同学在节日当天分别手工制作了一张卡片,送给除本人外的三人中的某一个人(每人只得一张卡片),可能的结果共有9种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点A(1,1),B(2,1),C(1,2),若-1≤λ≤2,2≤μ≤3,则$|{λ\overrightarrow{AB}+μ\overrightarrow{AC}}|$的取值范围是(  )
A.[1,10]B.$[{\sqrt{5},\sqrt{13}}]$C.[1,5]D.$[{2,\sqrt{13}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,已知双曲线C的右焦点为F,过它的右顶点A作实轴的垂线,与其一条渐近线相交于点B;若双曲线C的焦距为4,△OFB为等边三角形(O为坐标原点,即双曲线C的中心),则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,点E,F在以AB为直径的圆O(O为圆心)上,AB∥EF,平面ABCD⊥平面ABEF,且AB=2,AD=EF=1
(Ⅰ)设FC的中点为M,求证:OM∥面DAF;
(Ⅱ)求证:AF⊥面CBF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)(x∈D),若存在常数T(T>0),对任意x∈D都有f(x+T)=T•f(x),则称函数f(x)为T倍周期函数
(1)判断h(x)=x是否是T倍周期函数,并说明理由;
(2)证明:g(x)=($\frac{1}{4}$)x是T倍周期函数,且T的值是唯一的;
(3)若f(n)(n∈N*)是2倍周期函数,f(1)=1,f(2)=-4,Sn表示f(n)的前n 项和,Cn=$\frac{{S}_{2n}}{{S}_{2n-1}}$,求$\underset{lim}{n→∞}$Cn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设x取实数,则f(x)与g(x)表示同一个函数的是(  )
A.$f(x)={x^2},g(x)=\sqrt{x^2}$B.$f(x)=\frac{{{{(\sqrt{x})}^2}}}{x},g(x)=\frac{x}{{{{(\sqrt{x})}^2}}}$
C.f(x)=1,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正方体ABCD-A′B′C′D'′中,O是B′D′的中点.
(1)M、N分别是棱AB、B′C′的中点,求证:MN∥面AA′O.
(2)在线段AO上是否存在一点E,使得面A′EB′⊥面AOB′,若存在,请确定E点位置.;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}cos\frac{π}{2}x,0≤x≤4\\{log_{\frac{1}{4}}}(x-3)+1,x>4\end{array}\right.$,若实数a、b、c互不相等,且满足f(a)=f(b)=f(c),则a+b+c的取值范围是(8,23).

查看答案和解析>>

同步练习册答案