精英家教网 > 高中数学 > 题目详情

过点P(4,2)作相互垂直的直线l1和l2,使得l1与x轴的正半轴相交于点A,l2与y轴的正半轴相交于点B,若直线AB平分四边形OAPB的面积,求直线AB的方程.

解:由题意,设A(a,0)、B(0,b).则直线AB方程为(a>0,b>0),
∵,PA⊥PB,∴×=-1,化简得b=10-2a.
∵b>0,∴0<a<5.直线AB的一般式方程为bx+ay-ab=0
∴点P(4,2)到直线AB的距离为d1=
又∵原点O到直线AB的距离为d2=
∵四边形OAPB的面积被直线AB平分,∴d1=d2
∴4b+2a-ab=±ab,又∵b=10-2a.
解得
∴所求直线AB的方程为x+2y-4=0或2x+y-5=0.
分析:设A(a,0)、B(0,b).得到直线AB,由题知PA⊥PB即直线MA与直线MB的斜率乘积为-1,得到a与b的关系式;又因为四边形OAPB的面积被直线AB平分得到M到直线AB与O到直线AB的距离相等得到a与b的关系式,两者联立求出a和b即可得到直线AB的方程.
点评:本题考查学生理解两直线垂直的能力,灵活运用点到直线距离公式的是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+D1x+8y-8=0,圆C2:x2+y2+D2x-4y-2=0.
(1)若D1=2,D2=-4,求圆C1与圆C2的公共弦所在的直线l1的方程;
(2)在(1)的条件下,已知P(-3,m)是直线l1上一点,过点P分别作直线与圆C1、圆C2相切,切点为A、B,求证:|PA|=|PB|;
(3)将圆C1、圆C2的方程相减得一直线l2:(D1-D2)x+12y-6=0.Q是直线l2上,且在圆C1、圆C2外部的任意一点.过点Q分别作直线QM、QN与圆C1、圆C2相切,切点为M、N,试探究|QM|与|QN|的关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-4)2=1,直线l:3x+4y-6=0:
(1)圆C与直线l的位置关系为
相离
相离

(2)当点P在直线l:3x+4y-6=0上运动时,过点P作圆C的切线,切点为A、B,记四边形PACB的面积是f(p).则f(p)的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>

科目:高中数学 来源:湖南省期中题 题型:解答题

抛物线C的顶点在坐标原点,焦点在y轴的负半轴上,过点M(0,-2)作直线l与抛物线C交于A,B两点,且满足=(-4,-12)。
(1)求直线l和抛物线C的方程;
(2)当抛物线C上一动点P从点A向点B运动时,求△ABP的面积的最大值;
(3)在抛物线C上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案