精英家教网 > 高中数学 > 题目详情
已知数列{an}的首项a1=b(b≠0),它的前n项的和Sn=a1+a2+…+an(n≥1),并且S1,S2,Sn,…是一个等比数列,其公比为p(p≠0且|p|<1),
(1)证明:a2,a3,a3,…an,…(即{an}从第二项起)是一个等比数列;
(2)设Wn=a1S1+a2S2+a3S3+…+anSn(n≥1),求
limn→∞
Wn
(用b,p表示).
分析:(1)由题前n项的和Sn是一个等比数列,利用an与Sn的关系,求出an进而可证.
(2)先判断{anSn}是什么数列,再求和进而求极限得解.
解答:解:(1)证明:由已知条件得S1=a1=b.
Sn=S1pn-1=bpn-1(n≥1)
因为当n≥2时,Sn=a1+a2+…+an-1+an=Sn-1+an,所以
an=Sn-Sn-1=bpn-2(p-1)(n≥2)
从而
an+1
an
=
bpn-1(p-1)
bpn-2(p-1)
=p(n≥2)

因此a2,a3,a3,an,是一个公比为p的等比数列
(2)当n≥2时,
an+1Sn+1
anSn
=
bpn-1(p-1)bpn
bpn-2(p-1)bpn-1
=p2

且由已知条件可知p2<1,
因此数列a1S1,a2S2,a3S3,anSn是公比为p2<1的无穷等比数列,于是
lim
n→∞
(a2S2+a3S3+…+anSn)=
a2S2
1-p2
=
b2(p-1)p
1-p2
=-
b2p
1+p

从而
lim
n→∞
Wn=
lim
n→∞
(a1S1+a2S2+a3S3+…+anSn)

=
lim
n→∞
a1S1+
lim
n→∞
(a2S2+a3S3+…+anSn)

=b2-
b2p
1+p
=
b2
1+p
点评:(1)考查数列的证明,注意:从从第二项开始为等比.
(2)考查数列求和求极限,注意:1:数列{anSn}从第二项开始为等比数列,求和时不要忘记第一项. 2:记住无穷递降等比数列前n项和极限公式即{an}等比-1<q<1且q≠0时
lim
n→∞
Sn=
a1
1-q
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
1
2
,前n项和Sn=n2an(n≥1).
(1)求数列{an}的通项公式;
(2)设b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn为数列{bn}的前n项和,求证:Tn
n2
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2,时,an总是3Sn-4与2-
52
Sn-1
的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江门一模)已知数列{an}的首项a1=1,若?n∈N*,an•an+1=-2,则an=
1,n是正奇数
-2,n是正偶数
1,n是正奇数
-2,n是正偶数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项为a1=3,通项an与前n项和sn之间满足2an=Sn•Sn-1(n≥2).
(1)求证:数列{
1Sn
}
是等差数列;
(2)求数列{an}的通项公式;
(3)求数列{an}中的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=
2
3
an+1=
2an
an+1
,n∈N+
(Ⅰ)设bn=
1
an
-1
证明:数列{bn}是等比数列;
(Ⅱ)数列{
n
bn
}的前n项和Sn

查看答案和解析>>

同步练习册答案