ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSnºÍͨÏîanÂú×ãSn=
qq-1
£¨an-1£©£¨n¡ÊN*£¬qÊÇ´óÓÚ0µÄ³£Êý£¬ÇÒq¡Ù1£©£¬ÊýÁÐ{bn}Êǹ«±È²»ÎªqµÄµÈ±ÈÊýÁУ¬cn=an+bn£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèq=2£¬bn=3n£¬ÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹ÊýÁÐ{cn+1+¦Ëcn}ÊǵȱÈÊýÁУ¿Èô´æÔÚ£¬Çó³öËùÓпÉÄܵÄʵÊý¦ËµÄÖµ£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÊýÁÐ{cn}ÊÇ·ñÄÜΪµÈ±ÈÊýÁУ¿ÈôÄÜ£¬Çë¸ø³öÒ»¸ö·ûºÏµÄÌõ¼þµÄqºÍbnµÄ×éºÏ£¬Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨I£©ÀûÓÃÊýÁеÄÏîÓëÇ°nÏîºÍµÄ¹Øϵ½«ÏîÓëºÍµÄ¹Øϵת»¯ÎªÏîµÄµÝÍƹØϵ£¬¾ÝµÈ±ÈÊýÁеĶ¨ÒåÅжϳöÊǵȱÈÊýÁУ¬Çó³öͨÏ
£¨II£©¾ÝµÈ±ÈÊýÁеȼÛÓÚ´ÓµÚ¶þÏîÆð£¬Ã¿Ò»ÏΪǰºóÁ½ÏîµÄµÈ±ÈÖÐÏÁгöµÈʽ£¬Çó³ö¦ËµÄÖµ£®
£¨III£©Çó³öÇ°ÈýÏͨ¹ýÇ°ÈýÏî²»ÄܳɵȱÈÊýÁУ¬Ö¤µÃÊýÁв»ÄܳɵȱÈÊýÁУ®
½â´ð£º½â£º£¨¢ñ£©µ±n¡Ý2ʱ£¬an=Sn-Sn-1=
q
q-1
(an-1)-
q
q-1
(an-1-1)
£¬
ÕûÀíµÃan=qan-1
ÓÖÓÉS1=a1=
q
q-1
(a1-1)
£¬µÃa1=q
½áºÏq£¾0Öª£¬ÊýÁÐanÊÇÊ×ÏîΪq¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
¡àan=q•qn-1=qn
£¨¢ò£©½áºÏ£¨¢ñ£©Öª£¬µ±q=2ʱ£¬an=2n£¬ËùÒÔcn=2n+3n
¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹ÊýÁÐcn+1+¦ËcnÊǵȱÈÊýÁУ¬Ôò¶ÔÈÎÒân¡Ý2ÓÐ
£¨cn+1+¦Ëcn£©2=£¨cn+2+¦Ëcn+1£©£¨cn+¦Ëcn-1£©£¬½«cn=2n+3n´úÈëÉÏʽ£¬µÃ£º
[2n+1+3n+1+¦Ë£¨2n+3n£©]2=[2n+2+3n+2+¦Ë£¨2n+1+3n+1£©]•[2n+3n+¦Ë£¨2n-1+3n-1£©]£¬
¼´[£¨2+¦Ë£©2n+£¨3+¦Ë£©3n]2=[£¨2+¦Ë£©2n+1+£¨3+¦Ë£©3n+1][£¨2+¦Ë£©2n-1+£¨3+¦Ë£©3n-1]£¬
ÕûÀíµÃ
1
6
£¨2+¦Ë£©£¨3+¦Ë£©•2n•3n=0£¬½âµÃ¦Ë=-2»ò¦Ë=-3£®
¹Ê´æÔÚʵÊýʵÊý¦Ë=-2»ò-3£¬Ê¹Ê¹ÊýÁÐcn+1+¦ËcnÊǵȱÈÊýÁУ®
£¨¢ó£©ÊýÁÐ{cn}²»¿ÉÄÜΪµÈ±ÈÊýÁУ®
ÀíÓÉÈçÏ£ºÉèµÈ±ÈÊýÁÐ{bn}µÄ¹«±È·Ö±ðΪp£¬ÔòÓÉÌâÉèÖªp¡Ùq£¬Ôòcn=qn+b1pn-1
Ϊ֤{cn}²»ÊǵȱÈÊýÁÐÖ»ÐèÖ¤c22¡Ùc1•c3£®
ÊÂʵÉÏ£¬c22=£¨q2+b1p£©2=q4+2q2b1p+b12p2£¬¢Ù
c1•c3=£¨q+b1£©£¨q3+b1p2£©=q4+b12p2+b1q£¨p2+q2£©£¬£®¢Ú
¢Ú-¢ÙµÃ
c1c3-c22=b1q£¨p2+q2-2pq£©
ÓÉÓÚp¡Ùqʱ£¬p2+q2£¾2pq£¬ÓÖq¼°µÈ±ÈÊýÁеÄÊ×Ïîb1¾ù²»ÎªÁ㣬
ËùÒÔc1c3-c22¡Ù0£¬¼´c22¡Ùc1•c3£®¹Ê{cn}²»ÊǵȱÈÊýÁУ®
µãÆÀ£ºÀûÓÃSnÇóanʱ£¬×¢ÒâÒª·Ön¡Ý2ºÍn=1Á½¶ÎÇó£¬ÔÚÅжÏÇó³öµÄÁ½¶ÎÊÇ·ñÄܺϳÉÒ»¶Î£»Ö¤Ã÷ÊýÁÐÊǵȱÈÊýÁÐÓëÖ¤Ã÷Ò»¸öÊýÁв»ÊǵȱÈÊýÁеÄÇø±ð£ºÈôÊÇ£¬ÐèÖ¤µÃÈÎÒâÈýÏî³ÉµÈ±ÈÊýÁУ¬Èô²»ÊÇ£¬Ö»ÐèÖ¤µÄÇ°ÈýÏî²»ÊǵȱÈÊýÁм´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

19¡¢ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=n2£¨n¡ÊN*£©£¬ÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇÒÂú×ãb1=a1£¬2b3=b4
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{anbn}µÄÇ°nÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=an2+bn£¨a¡¢b¡ÊR£©£¬ÇÒS25=100£¬Ôòa12+a14µÈÓÚ£¨¡¡¡¡£©
A¡¢16B¡¢8C¡¢4D¡¢²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=n2+n+1£¬ÄÇôËüµÄͨÏʽΪan=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

13¡¢ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn=3n+a£¬Èô{an}ΪµÈ±ÈÊýÁУ¬ÔòʵÊýaµÄֵΪ
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSnÂú×ãSn+1=kSn+2£¬ÓÖa1=2£¬a2=1£®
£¨1£©ÇókµÄÖµ¼°Í¨Ïʽan£®
£¨2£©ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸