精英家教网 > 高中数学 > 题目详情
出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求点A(1,3)、B(6,9)的“距离”|AB|;
(2)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(3)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点A(1,3)、B(6,9),C(1,9),求经过这三个点确定的一个“圆”的方程,并画出大致图象;(说明所给图形小正方形的单位是1)

【答案】分析:(1)根据出租车几何学中“距离”的定义,易得|AB|=|6-1|+|9-3|=5+6=11;
(2)用出租车几何学中“距离”的定义代入,再结合已知条件去绝对值化简,可得M到原点O的“距离”等于2;
(3)设“圆”的“圆心”坐标为M(m,n),由|MA|=|MB|=|MC|结合绝对值的性质,得到M(,6),再根据出租车几何学中“距离”的定义,求出“半径”R的值,即可画出这个“圆”的大致图象.
解答:解:(1)根据出租车几何学中“距离”的定义,得
|AB|=|x1-x2|+|y1-y2|=|6-1|+|9-3|=5+6=11…(3分)
(2)点M(x,y)到原点的距离为:|MO|=|x-0|+|y-0|=|x|+|y|
∵线段x+y=2上的点M(x,y)满足x≥0,y≥0
∴|x|=x,|y|=y=2-x,可得|MO|=|x|+|y|=x+y=2…(6分)
(3)设“圆心”坐标为M(m,n),则
由|MA|=|MC|,得|m-1|+|n-3|=|m-1|+|n-9|,所以点M在y=6上…(7分)
又因为|MB|=|MC|即|m-1|+|n-9|=|m-6|+|n-9|,所以点M在上…(8分)
∴M(,6)…(10分)
R=|AM|=|-1|+|6-3|=…(14分)
“圆M”的图象如右图所示     …(16分)
点评:本题给出一个新的定义,叫我们求该定义下的“距离”和“圆”的图象,着重考查了对新定义的理解和进行简单的演绎推理等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•奉贤区一模)出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求点A(1,3)、B(6,9)的“距离”|AB|;
(2)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(3)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点A(1,3)、B(6,9),C(1,9),求经过这三个点确定的一个“圆”的方程,并画出大致图象;(说明所给图形小正方形的单位是1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区一模)出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为 r的“圆”方程;
(3)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图象.(说明所给图形小正方形的单位是1)

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市奉贤区高三期末调研试卷理科数学 题型:解答题

、出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的。在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样。直角坐标系内任意两点定义它们之间的一种“距离”:,请解决以下问题:

1、(理)求线段上一点的距离到原点的“距离”;

(文)求点的“距离”

2、(理)定义:“圆”是所有到定点“距离”为定值的点组成的图形,

求“圆周”上的所有点到点 的“距离”均为 的“圆”方程;

(文)求线段上一点的距离到原点的“距离”;

3、(理)点,写出线段的垂直平分线的轨迹方程并画出大致图像.

(文)定义:“圆”是所有到定点“距离”为定值的点组成的图形,点,求经过这三个点确定的一个“圆”的方程,并画出大致图像;

(说明所给图形小正方形的单位是1)

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2012年上海市奉贤区高考数学一模试卷(理科)(解析版) 题型:解答题

出租车几何学是由十九世纪的赫尔曼-闵可夫斯基所创立的.在出租车几何学中,点还是形如(x,y)的有序实数对,直线还是满足ax+by+c=0的所有(x,y)组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点A(x1,y1),B(x2,y2)定义它们之间的一种“距离”:|AB|=|x1-x2|+|y1-y2|,请解决以下问题:
(1)求线段x+y=2(x≥0,y≥0)上一点M(x,y)的距离到原点O(0,0)的“距离”;
(2)定义:“圆”是所有到定点“距离”为定值的点组成的图形,求“圆周”上的所有点到点Q(a,b)的“距离”均为 r的“圆”方程;
(3)点A(1,3)、B(6,9),写出线段AB的垂直平分线的轨迹方程并画出大致图象.(说明所给图形小正方形的单位是1)

查看答案和解析>>

同步练习册答案