精英家教网 > 高中数学 > 题目详情
函数f(x)=
1
3x-1
+
1
2
的奇偶性为
奇函数
奇函数
分析:先化简函数,然后求出函数的定义域看其是否关于原点对称,判断f(x)奇偶性,即找出f(-x)与f(x)之间的关系从而可得结论
解答:解:函数的定义域为(-∞,0)∪(0,+∞),f(x)=
1
3x-1
+
1
2
=
3x+1
2(3x-1)
,∴f(-x)=
3-x+1
2(3-x-1)
=-f(x)
∴函数为奇函数,
故答案为:奇函数.
点评:本题主要考查了函数的奇偶性的判定,在定义域关于原点对称的前提下,可根据定义判定函数奇偶性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(
13
x+2)x2

(1)求f(x)的导数f'(x);
(2)求f(x)在闭区间[-1,1]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x-lnx(x>0)
,则函数f(x)(  )
A、在区间(0,1),(1,+∞)内均有零点
B、在区间(0,1),(1,+∞)内均无零点
C、在区间(0,1)内有零点,在区间(1,+∞)内无零点
D、在区间(0,1)内无零点,在区间(1,+∞)内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=|
1
3
x-2|+|
1
3
x+2|
是(  )
A、奇函数
B、偶函数
C、非奇非偶函数
D、既是奇函数又是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海一模)函数f(x)=
13
x-lnx
的零点个数是
2
2

查看答案和解析>>

同步练习册答案