精英家教网 > 高中数学 > 题目详情

【题目】已知曲线y=5,:

(1)曲线上与直线y=2x-4平行的切线方程.

(2)求过点P(0,5),且与曲线相切的切线方程.

【答案】(1)16x-8y+25=0;(2)5x-4y+20=0.

【解析】

试题(1)求导数,利用曲线与直线y=2x﹣4平行,求出切点坐标,即可求出曲线与直线y=2x﹣4平行的切线的方程.

(2)设切点,可得切线方程,代入P,可得切点坐标,即可求出过点P(0,5)且与曲线相切的直线的方程.

试题解析:

(1)设切点为(x0,y0),y=5,y′=.

所以切线与y=2x-4平行,

所以=2,所以x0=,所以y0=.

则所求切线方程为y-=2,

16x-8y+25=0.

(2)因为点P(0,5)不在曲线y=5,

故需设切点坐标为M(x1,y1),

则切线斜率为.

又因为切线斜率为,

所以==,

所以2x1-2=x1,x1=4.

所以切点为M(4,10),斜率为,

所以切线方程为y-10=(x-4),

5x-4y+20=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理、化学、生物、历史、地理和政治六个科目中选出了三个科目作为选考科目.若一名学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.某学校为了了解高一年级200名学生选考科目的意向,随机选取20名学生进行了一次调查,统计选考科目人数如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

男生

选考方案确定的有5

5

5

2

1

2

0

选考方案待确定的有7

6

4

3

2

4

2

女生

选考方案确定的有6

3

5

2

3

3

2

选考方案待确定的有2

1

2

1

0

1

1

(1)在选考方案确定的男生中,同时选考物理、化学、生物的人数有多少?

(2)从选考方案确定的男生中任选2名,试求出这2名学生选考科目完全相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面四边形ABCD是菱形,ACBD=O,△PAC是边长为2的等边三角形,

1)求四棱锥P-ABCD的体积VP-ABCD

2)在线段PB上是否存在一点M,使得CM∥平面BDF?如果存在,求的值,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为自然数1234的一个全排列,且满足,则这样的排列有_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆方程为,点,直线过点

1)如图1,直线的斜率为,直线交圆不同两点,求弦的长度;

2)动点在圆上作圆周运动,线段的中点为点,求点的轨迹方程;

3)在(1)中,如图2,过点作直线,交圆不同两点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,点P为直线l上且不在x轴上的任意一点,直线与椭圆的交点分别为ABCDO为坐标原点.

1)求的周长;

2)设直线的斜线分别为,证明:

3)问直线l上是否存在点P,使得直线OAOBOCOD的斜率满足?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面命题正确的是(

A.”是“”的 充 分不 必 要条件

B.命题“若,则”的 否 定 是“ 存 在,则”.

C.,则“”是“”的必要而不充分条件

D.,则“”是“”的必要 不 充 分 条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校共有学生2000人,其中男生1100人,女生900人为了调查该校学生每周平均课外阅读时间,采用分层抽样的方法收集该校100名学生每周平均课外阅读时间(单位:小时)

1)应抽查男生与女生各多少人?

2)如图,根据收集100人的样本数据,得到学生每周平均课外阅读时间的频率分布直方图,其中样本数据分组区间为.若在样本数据中有38名女学生平均每周课外阅读时间超过2小时,请完成每周平均课外阅读时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均课外阅读时间与性别有关”.

男生

女生

总计

每周平均课外阅读时间不超过2小时

每周平均课外阅读时间超过2小时

总计

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形若直角三角形中较小的锐角,现在向该大止方形区域内随机地投掷一枚飞镖,则飞镖落在阴影部分的概率是  

A. B. C. D.

查看答案和解析>>

同步练习册答案