精英家教网 > 高中数学 > 题目详情

若x,y满足条件求下列各式的最大值与最小值:

(1)z=2x+y;

(2)z=2x-3y.

答案:
解析:

  解:(1)作出不等式组表示的平面区域,即可行域,如图所示.

  把z=2x+y变形为y=-2x+z,得到斜率为-2,在y轴上的截距为z,随z变化的一组平行直线.

  由图可以看出,当直线z=2x+y经过可行域上的点A时,截距z最大,经过点B时,截距z最小.

  解方程组得A点坐标为(5,2).解方程组得B点坐标为(1,1).所以zmax=2×5+2=12,zmin=2×1+1=3.

  (2)把z=2x-3y变形为y=x-得到斜率为,在y轴上截距为-,且随z变化的一组平行直线.由图可知,当直线经过可行域上点A(5,2)时,截距-最小,从而z最大;当直线经过可行域上C点时,截距-最大,从而z最小.

  解方程组得C点坐标为(1,),所以

  zmax=2×5-3×2=4,zmin=2×1-3×=-


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知M(1+cos2x,1),N(1,
3
sin2x+a)
(x∈R,a∈R,a是常数),且y=
OM
ON
(O为坐标原点).
(1)求y关于x的函数关系式y=f(x);
(2)若x∈[0,
π
2
]
时,f(x)的最大值为4,求a的值;
(3)在满足(2)的条件下,说明f(x)的图象可由y=sinx的图象如何变化而得到?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:
x 3 -2 4
2
y -2
3
0 -4
2
2
(Ⅰ)求C1、C2的标准方程;
(Ⅱ)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足
OM
ON
?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料的主要原料是磷酸盐1t、硝酸盐15t.现库存磷酸盐10t、硝酸盐66t.若生产1车皮甲种肥料产生的利润为10000元;生产1车皮乙种肥料产生的利润为5000元.
(1)设生产甲种肥料x车皮,乙种肥料y车皮,写出x,y满足的线性约束条件,并画出其相应的平面区域;
(2)设该厂的利润为z万元(1)的条件下求目标函数z=f(x,y)的表达式,并求该厂的最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料的主要原料是磷酸盐1t、硝酸盐15t.现库存磷酸盐10t、硝酸盐66t.若生产1车皮甲种肥料产生的利润为10000元;生产1车皮乙种肥料产生的利润为5000元.
(1)设生产甲种肥料x车皮,乙种肥料y车皮,写出x,y满足的线性约束条件,并画出其相应的平面区域;
(2)设该厂的利润为z万元(1)的条件下求目标函数z=f(x,y)的表达式,并求该厂的最大利润.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省深圳实验学校高二(上)第一阶段考试数学试卷(解析版) 题型:解答题

一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t、硝酸盐18t;生产1车皮乙种肥料的主要原料是磷酸盐1t、硝酸盐15t.现库存磷酸盐10t、硝酸盐66t.若生产1车皮甲种肥料产生的利润为10000元;生产1车皮乙种肥料产生的利润为5000元.
(1)设生产甲种肥料x车皮,乙种肥料y车皮,写出x,y满足的线性约束条件,并画出其相应的平面区域;
(2)设该厂的利润为z万元(1)的条件下求目标函数z=f(x,y)的表达式,并求该厂的最大利润.

查看答案和解析>>

同步练习册答案