精英家教网 > 高中数学 > 题目详情

已知函 数.

(1)若曲线在点处的切线与直线垂直,求函数的单调区间;

(2)若对于都有成立,试求的取值范围;

(3)记.当时,函数在区间上有两个零点,求实数的取值范围.

 

【答案】

(1)的单调增区间是,单调减区间是.

(2).           (3)

【解析】

试题分析:解: (I) 直线的斜率为1.函数的定义域为,所以,所以. 所以. .由解得;由解得.

所以的单调增区间是,单调减区间是.

(II),由解得;由解得.

所以在区间上单调递增,在区间上单调递减.

所以当时,函数取得最小值,.

因为对于都有成立,所以即可.

. 由解得.  所以的范围是.

(III)依题得,则.由解得;由解得.

所以函数在区间为减函数,在区间为增函数.

又因为函数在区间上有两个零点,所以

解得.所以的取值范围是.   

考点:导数的运用

点评:主要是考查了运用导数研究函数的单调性,以及函数的零点问题,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
2
x
+alnx(x>0)

(Ⅰ) 若f(x)在[1,+∞)上单调递增,求a的取值范围;
(Ⅱ)若定义在区间D上的函数y=f(x)对于区间D上的任意两个值x1、x2总有以下不等式
1
2
[f(x1)+f(x2)]≥f(
x1+x2
2
)
成立,则称函数y=f(x)为区间D上的“凹函 数”.试证当a≤0时,f(x)为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函f(x)数满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=2x,则x∈(-3,-2)时,f(x)=
-2x+3
-2x+3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函f(x)数满足f(x+1)=-f(x),当x∈(0,1)时,f(x)=2x,则x∈(-3,-2)时,f(x)=________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三上学期第三次月考理科数学 题型:解答题

(本小题满分12分)

已知向量,函数·

(1)求函数f(x)的单调递增区间;

(2)如果△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,试求x的范围及此时函

数f(x)的值域.

 

查看答案和解析>>

同步练习册答案