精英家教网 > 高中数学 > 题目详情
7.定义在R上的函数y=f(x)关于y轴对称,且在[0,+∞)上是增加的,则下列关系成立的是(  )
A.f(3)<f(-4)<f(-π)B.f(-π)<f(-4)<f(3)C.f(-4)<f(-π)<f(3)D.f(3)<f(-π)<f(-4)

分析 根据函数奇偶性和单调性之间的关系,即可比较大小.

解答 解:∵函数y=f(x)的图象关于y轴对称,
∴f(x)是偶函数,则f(-4)=f(4),f(-π)=f(π)
∵函数f(x)在区间[0,+∞)上为增函数,
∴f(3)<f(π)<f(4),
即f(3)<f(-π)<f(-4),
故选:D.

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则此几何体的体积等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|lg($\frac{2x-5}{x+2}$)≤0}
(1)设U=R,求∁UA;
(2)B={x|x<a},若A⊆B,求a的取值范围;
(3)C={x|m+1≤x≤2m-1}满足C⊆A,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各式的值:
(1)cos$\frac{π}{5}$cos$\frac{2π}{5}$;
(2)tan$\frac{π}{12}$-$\frac{1}{tan\frac{π}{12}}$;
(3)sin50°(1+$\sqrt{3}$tan10°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,点E.F分别在边AB,AC上,且AE=2EB,AF=$\frac{1}{2}$FC,BF,CE交于点P,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{AP}$;
(2)求$\frac{CP}{PE}$的值;
(3)若S△ABC=1,求S△ABP

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是(  )
A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知α为钝角,β为锐角,满足cosα=-$\frac{2\sqrt{5}}{5}$,sinβ=$\frac{\sqrt{10}}{10}$,则α-β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点M(1,1)关于直线l:2x-y-6=0对称点为N(a,b),则a+b=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知平面向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),α,β∈R,当α=$\frac{5π}{12}$,β=$\frac{π}{12}$时,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案