精英家教网 > 高中数学 > 题目详情
先阅读下列不等式的证法,再解决后面的问题:
已知a1,a2∈R,a1+a2=1,求证:a12+a22
1
2

证明:构造函数f(x)=(x-a12+(x-a22,f(x)=2x2-2(a1+a2)x+a12+a22=2x2-2x+a12+a22
因为对一切x∈R,恒有f(x)≥0,所以△=4-8(a12+a22)≤0,从而a12+a22
1
2

(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述证法,对你的推广的结论进行证明;
(3)若
1-x
+
2-y
+
3-z
=1,求x+y+z的最大值.
考点:归纳推理,不等式的证明
专题:综合题,推理和证明
分析:(1)由已知中已知a1,a2∈R,a1+a2=1,求证a12+a22
1
2
及整个式子的证明过程,我们根据归纳推理可以得到一个一般性的公式,若a1,a2,…,an∈R,a1+a2+…+an=1,则a12+a22+…+an2
1
n

(2)观察已知中的证明过程,我们可以类比对此公式进行证明;
(3)由(2)知,a1+a2+a3=1,a12+a22+a32
1
3
,令a1=
1-x
+=,a2=
2-y
,a3=
3-z
,则1-x+2-y+3-z≥
1
3
,即可求出x+y+z的最大值.
解答: 解:(1)若a1,a2,…,an∈R,a1+a2+…+an=1,
求证:a12+a22+…+an2
1
n

(2)证明:构造函数
f(x)=(x-a12+(x-a22+…+(x-an2
=nx2-2(a1+a2+…+an)x+a12+a22+…+an2
=nx2-2x+a12+a22+…+an2
因为对一切x∈R,都有f(x)≥0,所以△=4-4n(a12+a22+…+an2)≤0
从而证得:a12+a22+…+an2
1
n

(3)由(2)知,a1+a2+a3=1,a12+a22+a32
1
3

令a1=
1-x
,a2=
2-y
,a3=
3-z
,则1-x+2-y+3-z≥
1
3

∴x+y+z≤
17
3

当且仅当x=
8
9
,y=
17
9
,z=
26
9
时,x+y+z的最大值为
17
3
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).(3)对归纳得到的一般性结论进行证明.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1与椭圆
x2
m2
+
y2
b2
=1(a>0,m>b>0)的离心率互为倒数,则(  )
A、a2+b2=m2
B、a+b=m
C、a2=b2+m2
D、a=b+m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax-1(a∈R).
(1)求函数f(x)的单调区间;
(2)函数F(x)=f(x)-x1nx在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由:
(3)若g(x)=ln(ex-1)-lnx,当x∈(0,+∞)时,不等式f(g(x))<f(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
16
-
y2
9
=1的渐近线方程为(  )
A、y=±
4
3
x
B、y=±
3
4
x
C、y=±
3
5
x
D、y=±
4
5
x

查看答案和解析>>

科目:高中数学 来源: 题型:

美籍匈牙利数学家波利亚(GeorgePolya,1887-1985)曾说过:“类比是一个伟大的引路人,求解立体几何问题往往有赖于平面几何中的类比问题.”确实,类比是科学发展的灵魂,是数学发现的重要工具之一,例如,在Rt△ABC中,∠C=90°,a,b,c分别是A,B,C对边,由勾股定理可得c2=a2+b2
(1)由平面内直角三角形的勾股定理,我们可类比猜想得出空间中四面体的一个性质:在四面体S-ABC中,三个侧面SAB、SBC、SAC两两相互垂直,则
 

(2)试证明你所猜想的结论是否正确.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某人按打中国联通客服热线10010,准备借助人工台咨询本手机的收费情况,他参照以下流程,拨完10010后,需按的键应该是(  )
A、1B、7C、8D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方形ABCD内随机投一点P,求∠APB>90°且∠CPB<90°的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC为锐角三角形,若角θ终边上一点P的坐标为(sinA-cosB,cosA-sinC),则
sin(2π-θ)
|sinθ|
+
|cosθ|
sin(
π
2
+θ)
-
tanθ
|tanθ|
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若过点A(3,0)的直线l与圆(x-1)2+y2=1有公共点,则直线l的斜率的取值范围为(  )
A、[-
3
3
]
B、(-
3
3
C、[-
3
3
3
3
]
D、(-
3
3
3
3

查看答案和解析>>

同步练习册答案