精英家教网 > 高中数学 > 题目详情
7.已知,在△ABC中,∠C=90°,BC=6,AC=8,点M、N在△ABC的边上,将△ABC沿直线MN对折后,它的一个顶点正好落在对边上,且折痕MN截△ABC所成的小三角形(即对折后的重叠部分)与△ABC相似.请在下列图(不一定都用,不够可添)中分别画出折痕MN各种可能的位置,并说明画法及直接写出折痕的长.

分析 由已知条件利用三角形中位线性质、直角三角形相似的性质及垂直平公线性质及三角形相似的判定定理,能求出结果.

解答 (本小题满分12分)
解:∵在△ABC中,∠C=90°,BC=6,AC=8,点M、N在△ABC的边上,将△ABC沿直线MN对折后,
它的一个顶点正好落在对边上,且折痕MN截△ABC所成的小三角形(即对折后的重叠部分)与△ABC相似,
∴前3图分别为△ABC的中位线,长度分别是3、4、5…(6分)


图4中N为AB的中点,MN垂直平分AB,MN=$\frac{15}{4}$,…(8分)
图5中D为AB的中点,MN垂直平分CD,MN=$\frac{125}{24}$.…(12分)

点评 本题考查使折痕MN截大三角形所成的小三角形(即对折后的重叠部分)与大三角相似的折痕位置的确定及折痕长度的求法,是中档题,解题时要认真审题,注意三角形相似的判定定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{12}$x4-$\frac{1}{2}$ax2,若f(x)的导函数f′(x)在R上是增函数,求实数a的取值范围是?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y=3sin($\frac{π}{2}$-x)一4sinx的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用“<”或“>”填空:
①2.3-0.3>2.3-0.4;②0.6-2<0.6-3;③0.3x>1(x<0);
④log${\;}_{\sqrt{2}}$3<log${\;}_{\sqrt{2}}$3.1;⑤log0.5$\frac{1}{3}$<log0.5$\frac{1}{4}$;⑥log${\;}_{\frac{1}{3}}$0.2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy内,直线l的参数方程是$\left\{\begin{array}{l}x=2-\frac{3}{5}t\\ y=\frac{4}{5}\end{array}\right.(t$为参数).以O为极点、x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与x轴交于点M,点N在曲线C上,求M,N两点间距离|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,$\overrightarrow{BP}=2\overrightarrow{PA}$,点P的轨迹为曲线C.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线 T的极坐标方程为ρ=-4sinθ.
( I)以直线AB的倾斜角α为参数,求曲线C的参数方程;
(Ⅱ)若D为曲线 T上一点,求|PD|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ-1}\end{array}\right.$(θ为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+ρsinθ=1,则直线l截圆C所得的弦长是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标平面内,直线l过点P(1,1),且倾斜角α=$\frac{π}{3}$.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.
(1)求圆C的直角坐标方程;
(2)设直线l与圆C交于A、B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示的一个几何体及其正视图如图,则其俯视图是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案