精英家教网 > 高中数学 > 题目详情

【题目】如图,DE是⊙O的直径,过⊙O上的点C作直线AB,交ED的延长线于点B,且OA=OB,CA=CB,连结EC,CD.

(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED= ,⊙O的半径为3,求OA的长.

【答案】
(1)证明:连接OC,

因为OA=OB,CA=CB,

所以OC⊥AB,

所以直线AB是⊙O的切线


(2)解:∵直线AB是⊙O的切线,

∴∠E=∠BCD,

∵∠B=∠B,

∴△BEC∽△BCD,

= =

=

∵DE是⊙O的直径,

∴EC⊥CD.

△ECD中,tan∠CED= ,∴ =4,

=4,

∴BD=2,OA=5


【解析】(1)连接OC,证明:OC⊥AB,即可证明直线AB是⊙O的切线;(2)△ECD中,tan∠CED= 4,即可求OA的长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设0<a<1,已知函数f(x)= ,若对任意b∈(0, ),函数g(x)=f(x)﹣b至少有两个零点,则a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)= +|lnx﹣a|,x∈[1,e2].
(1)当a=3时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若f(x)≤ 恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且对任意正整数n都有an是n与Sn的等差中项,bn=an+1.
(1)求证:数列{bn}是等比数列,并求出其通项bn
(2)若数列{Cn}满足Cn= 且数列{C }的前n项和为Tn , 证明Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴与短轴之和为6,椭圆上任一点到两焦点 的距离之和为4.

(1)求椭圆的标准方程;

(2)若直线 与椭圆交于 两点, 在椭圆上,且 两点关于直线对称,问:是否存在实数,使,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>1,函数f(x)=,g(x)=x+4, x1[1,3],x2[0,3],使得f(x1)=g(x2)成立,则a的取值为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn , 且 ,S20=17,则S30为(
A.15
B.20
C.25
D.30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ax2﹣2bx
(1)设点a=﹣3,b=1,求f(x)的最大值;
(2)当a=0,b=﹣ 时,方程2mf(x)=x2有唯一实数解,求正数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f′(x)﹣g(x)(f′(x)为函数f(x)的导函数)在[a,b]上有且只有两个不同的零点,则称f(x)是g(x)在[a,b]上的“关联函数”.若f(x)= +4x是g(x)=2x+m在[0,3]上的“关联函数”,则实数m的取值范围是(
A.
B.[﹣1,0]
C.(﹣∞,﹣2]
D.

查看答案和解析>>

同步练习册答案