精英家教网 > 高中数学 > 题目详情

函数的部分图象如图所示.
(1)写出的最小正周期及图中的值;
(2)求在区间上的最大值和最小值.

(1);(2)最大值0,最小值.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递减区间;
(2)在中,分别是角A、B、C的对边,若,求 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
先解答(1),再通过结构类比解答(2):
(1)请用tanx表示,并写出函数的最小正周期;
(2)设为非零常数,且,试问是周期函数吗?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期和单调增区间;
(2)设,求的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=asin x+bcos的图象经过点.
(1)求实数a,b的值;
(2)求函数f(2x)的周期及单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知向量,设函数,且的图象过点和点.
(Ⅰ)求的值;
(Ⅱ)将的图象向左平移)个单位后得到函数的图象.若的图象上各最高点到点的距离的最小值为1,求的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=4cosωx·sin(ωx+)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)讨论f(x)在区间[0,]上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个三角形,使得.
(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的值;
(2)当时,求函数的最大值和最小值.

查看答案和解析>>

同步练习册答案