精英家教网 > 高中数学 > 题目详情
(1)四个不同的小球放入四个不同的盒中,一共有
 
种不同的放法.
(2)四个相同的小球放入四个不同的盒中,一共有
 
种不同的放法.
(3)四个不同的小球放入四个不同的盒中且恰好有一个空盒的放法有
 
种.
考点:计数原理的应用
专题:应用题,排列组合
分析:(1)四个不同的小球放入四个不同的盒中,相当于排列问题,有
A
4
4
=24种不同的放法.
(2)四个相同的小球放入四个不同的盒中,一共有1种不同的放法.
(3)首先选一个不放球的盒子有4种情况,第二步在放球的3个盒子中选一个用来放两个球有3种情况,第三步在四个球中选2个放进第二步选中的盒子中有C42种情况,第四步把剩下的两个球放进剩下的两个盒子里,一个盒子一个球有2种情况,得到结果.
解答: 解:(1)四个不同的小球放入四个不同的盒中,相当于排列问题,有
A
4
4
=24种不同的放法.
(2)四个相同的小球放入四个不同的盒中,一共有1种不同的放法.
(3)第一步先选一个不放球的盒子有4种情况,
第二步在放球的3个盒子中选一个用来放两个球有3种情况,
第三步在四个球中选2个放进第二步选中的盒子中有C42=6种情况,
第四步把剩下的两个球放进剩下的两个盒子里,一个盒子一个球有2种情况
所以放法总数为4×3×6×2=144
故答案为:24,1,144.
点评:本题考查分步计数问题,在分步时,要做到所分成的层次分明,计数合理,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由二项式定理知识可将[(x+y)n-(x-y)n](n∈N*)展开并化简.若a=
26
0
(
1
2
x
)dx
,则在(a+5)2n+1(n∈N*)的小数表示中,小数点后面至少连续有零的个数是(  )
A、2n-1B、2n
C、2n+1D、2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义两点P(x1,y1)与Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.给出下列命题:
(1)若P(1,2),Q(sinα,cosα)(α∈R),则d(P,Q)的最大值为3-
2

(2)若P,Q是圆x2+y2=1上的任意两点,则d(P,Q)的最大值为2
2

(3)若P(1,3),点Q为直线y=2x上的动点,则d(P,Q)的最小值为
1
2

其中为真命题的是(  )
A、(1)(2)(3)
B、(2)
C、(3)
D、(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式ax2+bx+c<0的解集为{x|x<0或x>β},(α<β<0),则不等式cx2-bx+a>0的解集为(  )
A、{x|-
1
β
<x<-
1
α
}
B、{x|
1
β
<x<
1
α
}
C、{x|-
1
α
<x<-
1
β
}
D、{x|x<-
1
α
或x>-
1
β
}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,二次函数f(x)=
1
2
an•x2+(2-n-an+1)•x的对称轴为x=
1
2

(1)试证明{2nan}是等差数列,并求{an}通项公式;
(2)设{an}的前n项和为Sn,试求使得Sn<3成立的n值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
BC
=
a
CA
=
b
AB
=
c
,当(
a
b
):(
c
b
)(
a
c
)=2:1:3时,求△ABC的三个内角(结果精确到1°)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知由长方体截去一个棱锥所得几何体的三视图如图所示,则该几何体的体积为(  )
A、16
B、
40
3
C、
32
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

A、B为x、y轴上两动点,|AB|=10,点M为AB中点,已知点P(10,0),C(6,3),则
1
2
|PM|+|CM|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求值:(2.25) 
1
2
-(-9.6)0-(
27
8
)-
2
3
+(1.5)-2
(2)解不等式:log2(3x)<log2(x2-4)

查看答案和解析>>

同步练习册答案