精英家教网 > 高中数学 > 题目详情
16.已知单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足$\overrightarrow{{e}_{1}}$•$\overrightarrow{{e}_{2}}$=$\frac{1}{2}$.若(5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)(k∈R),则k=2,|$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$|=$\sqrt{7}$.

分析 5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)(k∈R),可得(5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)•($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)=0,即可解出k.再利用数量积运算性质即可得出.

解答 解:∵(5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)⊥($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)(k∈R),
∴(5$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$)•($\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$)=$5{\overrightarrow{{e}_{1}}}^{2}$-4k${\overrightarrow{{e}_{2}}}^{2}$+$(5k-4)\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$=5-4k+(5k-4)×$\frac{1}{2}$=0,
解得k=2.
∴|$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$|=$\sqrt{{\overrightarrow{{e}_{1}}}^{2}+{k}^{2}{\overrightarrow{{e}_{2}}}^{2}+2k\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}}$=$\sqrt{1+{k}^{2}+k}$=$\sqrt{7}$,
故答案分别为:2;$\sqrt{7}$.

点评 本题考查了向量垂直与数量积的关系、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知tanα=-2,则2sinαcosα-cos2α的值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在四棱柱 ABCD-A1 B1C1D1中,CC1⊥底面 ABCD,底面 ABCD为菱形,点 E,F分别是 AB,B1C1的中点,且∠DAB=60°,AA1=AB=2.
(I)求证:EF∥平面 AB1D1
(II)求三棱锥 A-CB1D1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}(0≤x≤1)}\\{2-x(1<x≤2)}\end{array}\right.$的图象与x轴所围成的封闭图形的面积为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列命题中,正确的有①③④
①△ABC中,A>B的充分必要条件是sinA>sinB;
②已知向量$\overrightarrow a=(λ,2λ),\overrightarrow b=(3λ,2)$,如果$\overrightarrow a$与$\overrightarrow b$的夹角为钝角,则λ的取值范围是$λ<-\frac{4}{3}$或λ>0;
③若函数f(x)=x(x-c)2在x=2处有极大值,则c=6;
④在锐角△ABC中,BC=1,B=2A,则AC的取值范围为$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设有两个命题:命题p:函数f(x)=-x2+ax+1在[1,+∞)上是单调减函数;命题q:已知函数f(x)=2x3-6x2在[a,a+1]上单调递减,若命题p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{{x{\;}^2}}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$的离心率为$\frac{{\sqrt{2}}}{2}$,右顶点为A.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l经过C的左焦点F1且与C相交于B,D两点,求△ABD面积的最大值及相应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,值域为(0,+∞)的是(  )
A.y=$\sqrt{x}$B.y=$\frac{1}{\sqrt{x}}$C.y=$\frac{1}{x}$D.y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四凌锥P-ABCD而底面ABCD是矩形,侧面PAD是等腰直角三角形∠APD=90°,且平面PAD⊥平面ABCD.
(Ⅰ)求证:平面PAD⊥平面PCD;
(Ⅱ)在AD=2,AB=4,求三棱锥P-ABD的体积;
(Ⅲ)在条件(Ⅱ)下,求四棱锥P-ABCD外接球的表面积.

查看答案和解析>>

同步练习册答案