精英家教网 > 高中数学 > 题目详情
14.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率.
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:
年入流量X40<X<8080≤X≤120X>120
发电机最多
可运行台数
123
若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

分析 (1)依题意,p1=0.2,p2=0.7,p3=0.1.由二项分布能求出在未来4年中至多有1年的年入流量超过120的概率.
(2)记水电站年总利润为Y,分别求出安装1台、2台、3台发电机的对应的年利润的期望值,由此能求出欲使水电站年总利润的均值达到最大,应安装几台发电机.

解答 解:(1)依题意,p1=P(40<X<80)=$\frac{10}{50}$=0.2,
p2=P(80≤X≤120)=$\frac{35}{50}$=0.7,
p3=P(X>120)=$\frac{5}{50}$=0.1.
由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为
p=${C}_{4}^{0}$(1-p34+${C}_{4}^{1}$(1-p33p3=0.94+4×0.93×0.1=0.9477.…(5分)
(2)记水电站年总利润为Y(单位:万元).
①安装1台发电机的情形.
由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E(Y)=1000×1=1000.…(7分)
②安装2台发电机的情形.
依题意,当40<X<80时,一台发电机运行,此时Y=1000-160=840,因此P(Y=840)=P(40<X<80)=p1=0.2;
当X≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P(Y=2 000)=P(X≥80)=p2+p3=0.8.
由此得Y的分布列如下:

Y8402 000
P0.20.8
所以,E(Y)=840×0.2+2 000×0.8=1768.…(9分)
③安装3台发电机的情形.
依题意,当40<X<80时,一台发电机运行,此时Y=1000-320=680,
因此P(Y=680)=P(40<X<80)=p1=0.2;
当80≤X≤120时,两台发电机运行,此时Y=1000×2-160=1840,
因此P(Y=1840)=P(80≤X≤120)=p2=0.7;
当X>120时,三台发电机运行,此时Y=1000×3=3 000,
因此P(Y=3 000)=P(X>120)=p3=0.1.
由此得Y的分布列如下:
Y68018403 000
P0.20.70.1
所以,E(Y)=680×0.2+1840×0.7+3 000×0.1=1724.…(11分)
综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)

点评 本题考查概率的求法,考查欲使水电站年总利润的均值达到最大,应安装几台发电机的求法,是中档题,解题时要认真审题,注意二项分布的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{\sqrt{4-{x}^{2}}}{|2+x|-2}$是(  )
A.偶函数B.奇函数
C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.cos1740°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=ln$\frac{x}{x-1}$的定义域是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y-1≤0}\\{x-3y+3≥0}\end{array}\right.$,则z=x-2y的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列曲线的标准方程:
(1)与椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同的焦点,直线y=$\sqrt{3}$x为一条渐近线.求双曲线C的方程.
(2)焦点在直线3x-4y-12=0 的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列:$\frac{1}{1}$,$\frac{2}{1}$,$\frac{1}{2}$,$\frac{3}{1}$,$\frac{2}{2}$,$\frac{1}{3}$,$\frac{4}{1}$,$\frac{3}{2}$,$\frac{2}{3}$,$\frac{1}{4}$,…,依它的前10项的规律,这个数列的第2013项a2013满足(  )
A.0<a2013<$\frac{1}{10}$B.$\frac{1}{10}$≤a2013<1C.1≤a2013≤10D.a2013>10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的各项均为正数,a1=1,公比为q;等差数列{bn}中,b1=3,且{bn}的前n项和为Sn,a3+S3=27,q=$\frac{S_2}{a_2}$.
(Ⅰ)求{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=$\frac{3}{{2{S_n}}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合 A={x|y=$\sqrt{4-x}$},B={x|x≥3},则 A∩B=(  )
A.{x|3≤x≤4}B.{x|x≤3或x≥4}C.{x|x≤3或x>4}D.{x|3≤x<4}

查看答案和解析>>

同步练习册答案