精英家教网 > 高中数学 > 题目详情
6.在四棱锥中P-ABCD,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分别为PC、BD的中点.
(1)求证:EF∥平面PAD;
(2)在线段AB上是否存在点G,使得二面角C-PD-G的余弦值为$\frac{{\sqrt{3}}}{3}$,若存在,请求出点G的位置;若不存在,请说明理由.

分析 (1)连接AC,由正方形性质可知,AC与BD相交于点F,证明:EF∥PA,即可证明EF∥平面PAD;
(2)以O为原点,分别以射线OA,OF和OP为x轴,y轴和z轴建立空间直角坐标系,O-xyz,利用向量方法,即可求解.

解答 (1)证明:连接AC,由正方形性质可知,AC与BD相交于点F,
所以,在△PAC中,EF∥PA…(1分)
又PA?平面PAD,EF?平面PAD…(3分)
所以EF∥平面PAD…(4分)
(2)取AD的中点O,连接OP,OF,
因为PA=PD,所以PO⊥AD,
又因为侧面PAD⊥底面ABCD,交线为AD,所以PO⊥平面ABCD,
以O为原点,分别以射线OA,OF和OP为x轴,y轴和z轴建立空间直角坐标系,O-xyz,不妨设AD=2…(6分)
则有P(0,0,1),D(-1,0,0),C(-1,2,0),假设在AB上存在点G(1,a,0),0<a<2,
则$\overrightarrow{PC}$=(-1,2,-1),$\overrightarrow{PD}$=(-1,0,-1),$\overrightarrow{DG}$=(2,a,0)…(7分)
因为侧面PAD⊥底面ABCD,交线为AD,且底面是正方形,
所以CD⊥平面PAD,则CD⊥PA,
由PA2+PD2=AD2得PD⊥PA,
所以PA⊥PDC,即平面PDC的一个法向量为$\overrightarrow{PA}$=(1,0,-1)…(8分)
设平面PDG的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{{\begin{array}{l}{-x-z=0}\\{2x+a=0}\end{array}}\right.$,亦即$\left\{{\begin{array}{l}{z=-x}\\{y=-\frac{2x}{a}}\end{array}}\right.$,可取$\overrightarrow{n}$=(a,-2,-a)…(9分)
由二面角C-PD-G的余弦值为$\frac{{\sqrt{3}}}{3}$,可得a=1…(10分),
所以线段AB上存在点G,且G为AB的中点,使得二面角C-PD-G的余弦值为$\frac{{\sqrt{3}}}{3}$…(12分)

点评 本题考查线面平行的判定,考查面面角,考查向量方法的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{x-y≥-1}\\{3x-y≤a}\end{array}\right.$,目标函数z=x+2y的最小值为1,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(kx+a)ex的极值点为-a-1,其中k,a∈R,且a≠0.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)若?a∈[1,2],函数f(x)在(b-ea,2)上为增函数,求证:e2-3≤b<ea+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)的导函数为f'(x),若对任意实数x,有f(x)>f'(x),且f(x)+2017为奇函数,则不等式f(x)+2017ex<0的解集是(  )
A.(-∞,0)B.(0,+∞)C.$({-∞,\frac{1}{e}})$D.$({\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$•$\overrightarrow{b}$等于(  )
A.$2\sqrt{3}$B.3C.$\sqrt{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=lnx,g(x)=-\frac{1}{2}{x^2}+x$.
(1)设G(x)=2f(x)+g(x),求G(x)的单调递增区间;
(2)证明:当x>0时,f(x+1)>g(x);
(3)证明:k<1时,存在x0>1,当x∈(1,x0)时,恒有$f(x)+g(x)-\frac{1}{2}>k({x-1})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,则a2016=(  )
A.2B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.正四棱锥的底面边长为12cm,侧棱长为10cm,求此正四棱锥的高和斜高.

查看答案和解析>>

同步练习册答案