(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用可求得
,进而求得
.
根据上述结论求下列问题:
(1)当,
(
)时,求数列
的通项公式;
(2)当,
(
)时,求数列
的通项公式;
(3)当,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.
(Ⅰ) (Ⅱ)
(Ⅲ)
(1)由可知特征方程为:
,
…………………3分
所以 设 ,由
得到
,
所以 ; …………………6分
(2)由可以得到
设,则上述等式可以化为:
…………………8分
,所以
对应的特征方程为:
,
…………………10分
所以令 ,由
可以得出
所以…………………11分
即 …………………12分
(3)同样可以得到通项公式………14分
所以
即 …………………14分
即 ,
…………………16分
因此除以
的余数,完全由
除以
的余数确定,
因为 所以
,
,
,
,
,
,
,
,
,
由以上计算及可知,数列
各项除以
的余数依次是:
它是一个以
为周期的数列,从而
除以
的余数等价于
除以
的余数,所以
,
,
即所求集合为:…………………18分
科目:高中数学 来源: 题型:
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:与
的关系为
;
(2)设,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012届上海市崇明中学高三第一学期期中考试试题数学 题型:解答题
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数
,使得对任意的
(
)都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期。例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列。
(1)设数列满足
(
),
(
不同时为0),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列的前
项和为
,且
.
①若,试判断数列
是否为周期数列,并说明理由;
②若,试判断数列
是否为周期数列,并说明理由;
(3)设数列满足
(
),
,
,
,数列
的前
项和为
,试问是否存在
,使对任意的
都有
成立,若存在,求出
的取值范围;不存在, 说明理由;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市高三第一学期期中考试试题数学 题型:解答题
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
对于数列,如果存在一个正整数
,使得对任意的
(
)都有
成立,那么就把这样一类数列
称作周期为
的周期数列,
的最小值称作数列
的最小正周期,以下简称周期。例如当
时
是周期为
的周期数列,当
时
是周期为
的周期数列。
(1)设数列满足
(
),
(
不同时为0),且数列
是周期为
的周期数列,求常数
的值;
(2)设数列的前
项和为
,且
.
①若,试判断数列
是否为周期数列,并说明理由;
②若,试判断数列
是否为周期数列,并说明理由;
(3)设数列满足
(
),
,
,
,数列
的前
项和为
,试问是否存在
,使对任意的
都有
成立,若存在,求出
的取值范围;不存在,
说明理由;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市十三校高三上学期第一次联考试题文科数学 题型:解答题
(本题满分18分,第1小题满分5分,第2小题满分5分,第3小题满分8分)
已知函数,其中
.
(1)当时,设
,
,求
的解析式及定义域;
(2)当,
时,求
的最小值;
(3)设,当
时,
对任意
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010年上海市徐汇区高三第二次模拟考试数学卷(文) 题型:解答题
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列是等差数列,且公差为
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,求证:该数列是“封闭数列”;
(2)试判断数列是否是“封闭数列”,为什么?
(3)设是数列
的前
项和,若公差
,试问:是否存在这样的“封闭数列”,使
;若存在,求
的通项公式,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com