精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线ACBD的交点,MPD的中点.

1)求证:OM∥平面PAB

2)求证:平面PBD⊥平面PAC

【答案】(1)证明见解析;(2)证明见解析;

【解析】

(1)易知OMPBD的中位线,可知OMPB进而可证明OM∥平面PAB(2)底面ABCD是菱形,可知BDAC,再由PA⊥平面ABCD,可得BDPA,进而可证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC

证明:(1)∵在PBD中,OM分别是BDPD的中点,

OMPBD的中位线,∴OMPB

OM平面PABPB平面PAB

OM∥平面PAB

2)∵底面ABCD是菱形,∴BDAC

PA⊥平面ABCDBD平面ABCD,∴BDPA

AC平面PACPA平面PACACPA=A,∴BD⊥平面PAC

BD平面PBD

∴平面PBD⊥平面PAC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高一年级共有名学生,其中男生名,女生名,该校组织了一次口语模拟考试(满分为分).为研究这次口语考试成绩为高分是否与性别有关,现按性别采用分层抽样抽取名学生的成绩,按从低到高分成七组,并绘制成如图所示的频率分布直方图.已知的频率等于的频率,的频率与的频率之比为,成绩高于分的为“高分”.

(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;

(2)请你根据已知条件将下列列联表补充完整,并判断是否有的把握认为“该校高一年级学生在本次口语考试中成绩及格(分以上(含分)为及格)与性别有关”?

口语成绩及格

口语成绩不及格

合计

男生

女生

合计

附临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为, 当时,, 则函数在区间上的所有零点的和为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知AB为圆O的直径,且AB=4,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.

(1)求证:CD⊥平面PAB;

(2)求直线PC与平面PAB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12已知函数

1若直线过点,并且与曲线相切,求直线的方程;

2设函数上有且只有一个零点,求的取值范围。其中为自然对数的底数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线Ca0),过点P(-2,-4)的直线l的参数方程为t为参数),lC分别交于MN.

1)写出C的平面直角坐标系方程和l的普通方程;

2)若|PM||MN||PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,直线过定点P(2,0),斜率为。当为何值时,直线与抛物线:

(1)只有一个公共点;

(2)有两个公共点;

(3)没有公共点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移1个单位,再向下平移1个单位得到函数,则函数的图象与函数图象所有交点的横坐标之和等于(

A.12B.4C.6D.8

查看答案和解析>>

同步练习册答案