【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点.
(1)求证:OM∥平面PAB;
(2)求证:平面PBD⊥平面PAC.
【答案】(1)证明见解析;(2)证明见解析;
【解析】
(1)易知OM是△PBD的中位线,可知OM∥PB,进而可证明OM∥平面PAB;(2)底面ABCD是菱形,可知BD⊥AC,再由PA⊥平面ABCD,可得BD⊥PA,进而可证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC.
证明:(1)∵在△PBD中,O、M分别是BD、PD的中点,
∴OM是△PBD的中位线,∴OM∥PB,
∵OM平面PAB,PB平面PAB,
∴OM∥平面PAB;
(2)∵底面ABCD是菱形,∴BD⊥AC,
∵PA⊥平面ABCD,BD平面ABCD,∴BD⊥PA.
∵AC平面PAC,PA平面PAC,AC∩PA=A,∴BD⊥平面PAC,
∵BD平面PBD,
∴平面PBD⊥平面PAC.
科目:高中数学 来源: 题型:
【题目】某校高一年级共有名学生,其中男生名,女生名,该校组织了一次口语模拟考试(满分为分).为研究这次口语考试成绩为高分是否与性别有关,现按性别采用分层抽样抽取名学生的成绩,按从低到高分成,,,,,,七组,并绘制成如图所示的频率分布直方图.已知的频率等于的频率,的频率与的频率之比为,成绩高于分的为“高分”.
(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;
(2)请你根据已知条件将下列列联表补充完整,并判断是否有的把握认为“该校高一年级学生在本次口语考试中成绩及格(分以上(含分)为及格)与性别有关”?
口语成绩及格 | 口语成绩不及格 | 合计 | |
男生 | |||
女生 | |||
合计 |
附临界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB为圆O的直径,且AB=4,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:CD⊥平面PAB;
(2)求直线PC与平面PAB所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知函数
(1)若直线过点,并且与曲线相切,求直线的方程;
(2)设函数在上有且只有一个零点,求的取值范围。(其中为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N.
(1)写出C的平面直角坐标系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式: ,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com