【题目】已知是定义在上的奇函数,且,当a,,时,有成立.
Ⅰ求在区间1上的最大值;
Ⅱ若对任意的都有,求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|2x+1|+|x﹣a|,a∈R. (Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a< 时,对于x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为(0,+),若在(0,+)上为增函数,则称为“一阶比增函数”;若在(0,+)上为增函数,则称为”二阶比增函数”。我们把所有“一阶比增函数”组成的集合记为1,所有“二阶比增函数”组成的集合记为2。
(1)已知函数,若∈1,求实数的取值范围,并证明你的结论;
(2)已知0<a<b<c,∈1且的部分函数值由下表给出:
t | 4 |
求证:;
(3)定义集合,且存在常数k,使得任取x∈(0,+),<k},请问:是否存在常数M,使得任意的∈,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列推理过程不是演绎推理的是( ).
①一切奇数都不能被2整除,2019是奇数, 2019不能被2整除;
②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;
③在数列中,,,由此归纳出的通项公式;
④由“三角形内角和为”得到结论:直角三角形内角和为 .
A. ① ② B. ② ③ C. ③ ④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°
(I)求证:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了防止受到核污染的产品影响民众的身体健康,某地要求这种产品在进入市场前必须进行两轮苛刻的核辐射检测,只有两轮检测都合格才能上市销售,否则不能销售。已知该产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,每轮检测结果只有“合格”、“不合格”两种,且两轮检测是否合格相互之间没有影响。
(1)求该产品不能上市销售的概率;
(2)如果这种产品可以上市销售,则每件产品可获利50元;如果这种产品不能上市销售,则每件产品亏损80元(即获利为80元)。现有这种产品4件,记这4件产品获利的金额为元,求的分布列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经观测,某昆虫的产卵数y与温度x有关,现将收集到的温度xi和产卵数yi(i=1,2,…,10)的10组观测数据作了初步处理,得到如下图的散点图及一些统计量表.
表中 ,
(1)根据散点图判断, , 与 哪一个适宜作为y与x之间的回归方程模型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据.
①试求y关于x回归方程;
②已知用人工培养该昆虫的成本h(x)与温度x和产卵数y的关系为h(x)=x(lny﹣2.4)+170,当温度x(x取整数)为何值时,培养成本的预报值最小?
附:对于一组数据(u1,v1),(u2,v2),…(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为β=,α=﹣β.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设直线与曲线相交于, 两点,当变化时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上, =λ , =μ ,若 =1, =﹣ ,则λ+μ=( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com