精英家教网 > 高中数学 > 题目详情
3.下列函数中,既为奇函数又在(0,+∞)内单调递减的是(  )
A.f(x)=x3B.f(x)=${x}^{-\frac{1}{2}}$C.f(x)=-xD.f(x)=x+$\frac{3}{x}$

分析 可以看出f(x)=x3为增函数,而$f(x)={x}^{-\frac{1}{2}}$的定义域为(0,+∞),定义域不关于原点对称,从而判断该函数不是奇函数,这样便可判断A,B错误,而容易判断C正确,对于选项D的函数,可以通过求导数,判断其在(0,+∞)上的单调性,从而可说明D错误.

解答 解:A.f(x)=x3在(0,+∞)内单调递增;
B.$f(x)={x}^{-\frac{1}{2}}$的定义域为(0,+∞),不关于原点对称,∴该函数非奇非偶;
C.f(x)=-x显然为奇函数,且在(0,+∞)内单调递减,∴该选项正确;
D.$f(x)=x+\frac{3}{x}$,$f′(x)=\frac{{x}^{2}-3}{{x}^{2}}$,∴f(x)在$[\sqrt{3},+∞)$单调递增.
故选C.

点评 考查对函数f(x)=x3的单调性的掌握,奇函数的定义域的特点,以及一次函数的单调性和奇偶性,根据导数符号判断函数单调性的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设a<$\frac{1}{2}$,判断并用单调性定义证明函数$f(x)=\frac{ax+1}{x+2}$,在(-2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=|$\frac{{x}^{2}+4x+1}{x}$|-a的图象与x轴恰有四个不同的交点,则实数a的取值范围为(0,2)∪(6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求直线x-y=0和椭圆$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$的两个交点及焦点间距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A、B、C分别为△ABC的三边a、b、c所对的角,△ABC的面积为S,且$\sqrt{3}abcosC=2S$.
(1)求角C的大小;
(2)若$c=\sqrt{6}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知等差数列{an}的公差d≠0,且a3+a9=a10-a8.若an=0,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=log2(x-3).
(1)求f(51)-f(6)的值;
(2)求f(x)的定义域;
(3)若f(x)≥0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=3x,且f(a+2)=18,函数g(x)=3ax-4x(x∈R).
(1)求g(x)的解析式;
(2)若方程g(x)-b=0在[-2,2]上有两个不同的解,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.高斯记号[x]表示不超过实数x的最大整数,如[-1.23]=-2,[1.23]=1,则方程[log2(lgx)]=0的解集为[10,100).

查看答案和解析>>

同步练习册答案