精英家教网 > 高中数学 > 题目详情

【题目】已知命题函数上是减函数,命题

(1)若为假命题,求实数的取值范围;

(2)若为真命题,且”为真命题,求实数的取值范围.

【答案】(1);(2)

【解析】分析:(1)根据判别式小于零可得命题为真命题时实数的取值范围求其补集即可得结果;(2)为真命题,且为真命题,可得为真命题从而可得结果.

详解:(1)若命题为真命题时,

上恒成立,

,解得

所以命题为假命题时,实数的取值范围为.

(2)当函数上是减函数时,

则有,解得

为真命题时,实数的取值范围为

因为“”为真命题,所以为假命题,又因为”为真命题

所以为真命题

综上可知,当 “为真命题且”为真命题时,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(3x+ ).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点在曲线上,从原点向移动,如果直线,曲线及直线所围成的两个阴影部分的面积分别记为,如图所示.

(1)当时,求点的坐标;

(2)当有最小值时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时,点的轨迹为曲线

(1)求曲线的方程;

(2)若直线与曲线相交于两点,为坐标原点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小张同学计划在期末考试结束后,和其他小伙伴一块儿外出旅游,增长见识.旅行社为他们提供了省内的都江堰、峨眉山、九寨沟和省外的丽江古城,黄果树瀑布和凤凰古城这六个景点,由于时间和距离等原因,只能从中任取4个景点进行参观,其中黄果树瀑布不能第一个参观,且最后参观的是省内景点,则不同的旅游顺序有( )

A. 54种 B. 72种 C. 120种 D. 144种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点的圆的圆心轴的非负半轴上,且圆截直线所得弦长为

(1)求的标准方程;

(2)若过点且斜率为的直线交圆两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题函数上是减函数,命题

(1)若为假命题,求实数的取值范围;

(2)若“”为假命题,求实数的取值范围.

查看答案和解析>>

同步练习册答案