精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.
(1)求a的值.
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.
(1) a=-2  (2) 公切线是y=9,此时k=0
(1)f'(x)=3ax2+6x-6a,f'(-1)=0,
即3a-6-6a=0,∴a=-2.
(2)存在.∵直线m恒过定点(0,9),直线m是曲线y=g(x)的切线,设切点为(x0,3+6x0+12),
∵g'(x0)=6x0+6,
∴切线方程为y-(3+6x0+12)=(6x0+6)(x-x0),将点(0,9)代入,得x0=±1,
当x0=-1时,切线方程为y=9;
当x0=1时,切线方程为y=12x+9.
由f'(x)=0得-6x2+6x+12=0,
即有x=-1或x=2,
当x=-1时,y=f(x)的切线方程为y=-18;
当x=2时,y=f(x)的切线方程为y=9.
∴公切线是y=9.
又令f'(x)=12得-6x2+6x+12=12,
∴x=0或x=1.
当x=0时,y=f(x)的切线方程为y=12x-11;
当x=1时,y=f(x)的切线方程为y=12x-10,
∴公切线不是y=12x+9.
综上所述公切线是y=9,此时k=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数(a为实数).
(1) 当a=5时,求函数处的切线方程;
(2) 求在区间)上的最小值;
(3) 若存在两不等实根,使方程成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ab∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3x2bx的图象在交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1x2,当x∈(x1x2)时,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x >0时,ex>x2-2ax+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设f(x)=ln(x2+1),g(x)=x2.
(1)求F(x)=f(x)-g(x)的单调区间,并证明对[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);
(2)将y=f(x)的图像向下平移a(a>0)个单位,同时将y=g(x)的图像向上平移b(b>0)个单位,使它们恰有四个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx+ax+1,a∈R.
(1)求f(x)在x=1处的切线方程.
(2)若不等式f(x)≤0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a等于(  )
A.-1或-B.-1或
C.-或-D.-或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知都是定义在R上的函数,,则关于x的方程)有两个不同实根的概率为     .

查看答案和解析>>

同步练习册答案