精英家教网 > 高中数学 > 题目详情
11.已知曲线C的参数方程:$\left\{{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}}$(α为参数),曲线C上的点$M(1,\frac{{\sqrt{2}}}{2})$对应的参数α=$\frac{π}{4}$,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知直线l过点P(1,0),且与曲线C于A,B两点,求|PA|•|PB|的范围.

分析 (I)由椭圆参数方程可得:1=a$cos\frac{π}{4}$,$\frac{\sqrt{2}}{2}$=b$sin\frac{π}{4}$,解得a,b.可得曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$,化为直角坐标方程,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为极坐标方程.
(II)直线l的参数方程为:$\left\{\begin{array}{l}{x=1+tcosθ}\\{y=tsinθ}\end{array}\right.$(t为参数),代入曲线C的方程,利用根与系数的关系可得:|PA|•|PB|=-t1t2,进而得出.

解答 解:(I)由曲线C的参数方程:$\left\{{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}}$(α为参数),可得:1=a$cos\frac{π}{4}$,$\frac{\sqrt{2}}{2}$=b$sin\frac{π}{4}$,解得a=$\sqrt{2}$,b=1.
∴曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$,其直角坐标方程为:$\frac{{x}^{2}}{2}+{y}^{2}$=1,可得ρ2cos2θ+2ρ2sin2θ=2.
(II)直线l的参数方程为:$\left\{\begin{array}{l}{x=1+tcosθ}\\{y=tsinθ}\end{array}\right.$(t为参数),代入曲线C的方程可得:(1+sin2θ)t2+2tcosθ-1=0,
∴|PA|•|PB|=-t1t2=$\frac{1}{1+si{n}^{2}θ}$∈[$\frac{1}{2}$,1].

点评 本题考查了极坐标方程化为直角坐标方程、椭圆的参数直角方程极坐标方程的互化及其应用、直线的参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=4+tcosa}\\{y=2+tcosa}\end{array}\right.$ (t为参数,a为直线l的倾斜角),曲线C的极坐标方程为ρ=4cosθ
(1)写出曲线C的直角坐标方程
(2)直线l与曲线C交于不同的两点M,N,设P(4,2).求|PM|+|PN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在各项均为正数的等比数列{an}中,已知a1+2a2=a3+2a4-1,则a5+2a6的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{a}$,$\overrightarrow{b}$不共线,且$\overrightarrow{c}$=λ1$\overrightarrow{a}$+λ2$\overrightarrow{b}$(λ1,λ2∈R),若$\overrightarrow{c}$∥$\overrightarrow{b}$,则λ1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=1-cosθ\\ y=sinθ\end{array}\right.$(θ为参数).
(1)将C1的方程化为普通方程;
(2)以O为极点,x轴的正半轴建立极坐标系.设曲线C2的极坐标方程是$θ=\frac{π}{6}$,求曲线C1和C2的交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=-1+tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:$ρ=2\sqrt{3}cosθ$.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,B,点M(-1,-1),求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(  )
A.14斛B.22斛C.36斛D.66斛

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R)
(1)试判断直线l是否过定点,若过定点,则求出定点,不过,则说明理由;
(2)证明:不论m取什么实数,直线l与圆C恒相交;
(3)求圆C截直线l所得的弦长的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,在大小为45°的二面角A-EF-D中,四边形ABFE与CDEF都是边长为1的正方形,则B与C两点间的距离是(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.$\sqrt{3-\sqrt{2}}$

查看答案和解析>>

同步练习册答案