ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+1£¬¶ÔÓÚÈÎÒâµÄʵÊýx1¡¢x2£¨x1¡Ùx2£©£¬¶¼ÓÐ
f(x1)+f(x1)
2
£¾f(
x1+x2
2
)
³ÉÁ¢£¬ÇÒf£¨x+2£©ÎªÅ¼º¯Êý£®
£¨1£©Ö¤Ã÷£ºÊµÊýa£¾0£»           
£¨2£©ÇóʵÊýaÓëbÖ®¼äµÄ¹Øϵ£»
£¨3£©¶¨ÒåÇø¼ä[m£¬n]µÄ³¤¶ÈΪn-m£¬ÎÊÊÇ·ñ´æÔÚ³£Êýa£¬Ê¹µÃº¯Êýy=f£¨x£©ÔÚÇø¼ä[a£¬3]µÄÖµÓòΪD£¬ÇÒDµÄ³¤¶ÈΪ10-a3£¿Èô´æÔÚ£¬Çó³öaµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ýº¯ÊýµÄÐÔÖʿɵú¯ÊýÊÇÏ°¼º¯Êý£¬½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʿɵÃa£¾0£®
£¨2£©ÓÉÌâÒâ¿ÉµÃ£ºº¯Êýf£¨x+2£©µÄ¶Ô³ÆÖáÊÇyÖᣬ¸ù¾Ýy=f£¨x+2£©µÄͼÏóÑØxÖáÏòÓÒƽÒÆÁ½¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=f£¨x£©µÄͼÏ󣬿ɵöþ´Îº¯Êýy=f£¨x£©Í¼ÏóµÄ¶Ô³ÆÖáΪx=2£¬½ø¶øµÃµ½aÓëbµÄ¹Øϵ£®
£¨3£©µ±Çø¼ä[a£¬3]°üº¬¶Ô³ÆÖáʱ£¬Çóº¯ÊýÖµÓòÐ迼ÂǶԳÆÖáÊÇ¿¿½üÇø¼ä×ó¶Ëµã£¬»¹ÊÇ¿¿½üÇø¼äÓҶ˵㣬´Ó¶øÈ·¶¨º¯ÊýÖµÓò£®¿´Âú×ãÇÒDµÄ³¤¶ÈΪ10-a3µÄaÖµÊÇ·ñ´æÔÚ£®µ±Çø¼ä[a£¬3]ÔÚ¶Ô³ÆÖáÓÒ±ßʱ£¬º¯ÊýÔÚÇø¼äÉÏÊÇÔöº¯Êý£¬Ò×Çóº¯ÊýÖµÓò£®ÔÙ¿´Âú×ãÇÒDµÄ³¤¶ÈΪ10-a3µÄaÖµÊÇ·ñ´æÔÚ£®
½â´ð£º½â£º£¨1£©ÒòΪ¶ÔÓÚÈÎÒâµÄʵÊýx1¡¢x2£¨x1¡Ùx2£©£¬¶¼ÓÐ
f(x1)+f(x1)
2
£¾f(
x1+x2
2
)
³ÉÁ¢£¬
ËùÒÔº¯Êýf£¨x£©Ï°¼º¯Êý£¬
ËùÒÔ½áºÏ¶ø¶þ´Îº¯ÊýµÄÐÔÖʿɵãºÊµÊýa£¾0£®
£¨2£©ÒòΪf£¨x+2£©ÎªÅ¼º¯Êý£¬
ËùÒÔº¯Êýf£¨x+2£©µÄ¶Ô³ÆÖáÊÇyÖᣮ
ÓÖÒòΪy=f£¨x+2£©µÄͼÏóÑØxÖáÏòÓÒƽÒÆÁ½¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=f£¨x£©µÄͼÏó£¬
ËùÒÔº¯Êýy=f£¨x£©Í¼ÏóµÄ¶Ô³ÆÖáΪx=2£¬¼´º¯Êýf£¨x£©¹ØÓÚx=2¶Ô³Æ£¬
ËùÒÔÓɶþ´Îº¯ÊýµÄÐÔÖʿɵãº-
b
2a
=2
£¬¼´4a+b=0£¬
ËùÒÔʵÊýaÓëbÖ®¼äµÄ¹ØϵΪ£º4a+b=0£®
£¨3£©ÓÉ£¨2£©¿ÉµÃ£ºf£¨x£©=ax2-4ax+1=a£¨x-2£©2+1-4a£¬
µ±0£¼a¡Ü1ʱ£¬f£¨x£©min=1-4a£¬f£¨x£©max=a3-4a2+1£¬
ËùÒÔf£¨x£©max-f£¨x£©min=a3-4a2+1-£¨1-4a£©=a£¨a-2£©2£¬
ÓÉ0£¼a¡Ü1ʱ£¬1¡Ü£¨a-2£©2£¼4£¬Ôòa£¨a-2£©2£¼4£¬¶ø10-a3£¾9£¬²»ºÏÌâÒ⣻
µ±1£¼a£¼2ʱ£¬f£¨x£©min=1-4a£¬f£¨x£©max=1-3a£¬
ËùÒÔf£¨x£©max-f£¨x£©min=1-3a-£¨1-4a£©=a£¬
ÓÉ1£¼a£¼2£¬µÃ10-a3£¾2£¬ËùÒÔa¡Ù10-a3£¬²»ºÏÌâÒ⣻
µ±2¡Üa£¼3ʱ£¬f£¨x£©min=a3-4a2+1£¬f£¨x£©max=1-3a£¬
ËùÒÔf£¨x£©max-f£¨x£©min=1-3a-£¨a3-4a2+1£©=10-a3£¬
¹Ê4a2-3a-10=0£¬£¨4a+5£©£¨a-2£©=0£¬
ÒòΪ2¡Üa£¼3£¬
ËùÒÔa=2£®
×ÛÉÏËùÊö£º´æÔÚ³£Êýa=2·ûºÏÌâÒ⣮
µãÆÀ£º±¾Ìâ×ۺϿ¼²éº¯ÊýµÄÆæżÐÔ¡¢µ¥µ÷ÐÔ¡¢¶Ô³ÆÐÔ¡¢ÖµÓò¡¢³éÏóº¯ÊýµÈ֪ʶ£®×¢Òâ·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+2£¨m-2£©x+m-m2£®
£¨I£©Èôº¯ÊýµÄͼÏó¾­¹ýÔ­µã£¬ÇÒÂú×ãf£¨2£©=0£¬ÇóʵÊýmµÄÖµ£®
£¨¢ò£©Èôº¯ÊýÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+bx+c£¨a¡Ù0£©µÄͼÏó¹ýµã£¨0£¬1£©£¬ÇÒÓëxÖáÓÐΨһµÄ½»µã£¨-1£¬0£©£®
£¨¢ñ£©Çóf£¨x£©µÄ±í´ïʽ£»
£¨¢ò£©É躯ÊýF£¨x£©=f£¨x£©-kx£¬x¡Ê[-2£¬2]£¬¼Ç´Ëº¯ÊýµÄ×îСֵΪg£¨k£©£¬Çóg£¨k£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2-16x+q+3£®
£¨1£©Èôº¯ÊýÔÚÇø¼ä[-1£¬1]ÉÏ´æÔÚÁãµã£¬ÇóʵÊýqµÄÈ¡Öµ·¶Î§£»
£¨2£©Èô¼ÇÇø¼ä[a£¬b]µÄ³¤¶ÈΪb-a£®ÎÊ£ºÊÇ·ñ´æÔÚ³£Êýt£¨t¡Ý0£©£¬µ±x¡Ê[t£¬10]ʱ£¬f£¨x£©µÄÖµÓòΪÇø¼äD£¬ÇÒDµÄ³¤¶ÈΪ12-t£¿Çë¶ÔÄãËùµÃµÄ½áÂÛ¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•¹ãÖÝһģ£©ÒÑÖª¶þ´Îº¯Êýf£¨x£©=x2+ax+m+1£¬¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼£¨2m-1£©x+1-m2µÄ½â¼¯Îª£¨m£¬m+1£©£¬ÆäÖÐmΪ·ÇÁã³£Êý£®Éèg(x)=
f(x)x-1
£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©k£¨k¡ÊR£©ÈçºÎȡֵʱ£¬º¯Êý¦Õ£¨x£©=g£¨x£©-kln£¨x-1£©´æÔÚ¼«Öµµã£¬²¢Çó³ö¼«Öµµã£»
£¨3£©Èôm=1£¬ÇÒx£¾0£¬ÇóÖ¤£º[g£¨x+1£©]n-g£¨xn+1£©¡Ý2n-2£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©ÒÑÖª¶þ´Îº¯Êýf£¨x£©µÄͼÏóÓëxÖáµÄÁ½½»µãΪ£¨2£¬0£©£¬£¨5£¬0£©£¬ÇÒf£¨0£©=10£¬Çóf£¨x£©µÄ½âÎöʽ£®
£¨2£©ÒÑÖª¶þ´Îº¯Êýf£¨x£©µÄͼÏóµÄ¶¥µãÊÇ£¨-1£¬2£©£¬ÇÒ¾­¹ýÔ­µã£¬Çóf£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸