精英家教网 > 高中数学 > 题目详情

【题目】已知被直线 分成面积相等的四个部分,且截轴所得线段的长为2. 

(1)求的方程;

(2)若存在过点的直线与相交于 两点,且点恰好是线段的中点,求实数的取值范围.

【答案】(1) (2)

【解析】试题分析:1被直线 分成面积相等的四个部分说明圆心在直线的交点,再根据截得x轴线段长求出半径即可;2根据平面几何知识知,“点是线段的中点”等价于“圆上存在一点使得的长等于的直径”,转化为,即,从而求解.

试题解析:

(1)设的方程为

因为被直线分成面积相等的四部分,

所以圆心一定是两直线的交点,

易得交点为,所以.

x轴所得线段的长为2,所以.

所以的方程为.

(2)法一:如图, 的圆心,半径

过点N的直径,连结.

不重合时,

又点是线段的中点

重合时,上述结论仍成立.

因此,“点是线段的中点”等价于“圆上存在一点使得的长等于的直径”.

由图可知,即,即.

显然,所以只需,即,解得.

所以实数的取值范围是.

法二:如图, 的圆心,半径,连结

于点,并设.

由题意得

所以

又因为,所以

代入整理可得

因为,所以,,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设双曲线的左焦点为,点为双曲线右支上的一点,且与圆相切于点为线段的中点, 为坐标原点,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )

A. 至少有一个白球;至少有一个红球 B. 至少有一个白球;红、黑球各一个

C. 恰有一个白球;一个白球一个黑球 D. 至少有一个白球;都是白球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱台ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCDAB=2ADAD=A1B1BAD=60°

证明:CC1∥平面A1BD

求直线CC1与平面ADD1A1所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,圆,点是圆上一动点, 的垂直平分线与交于点.

1)求点的轨迹方程;

2)设点的轨迹为曲线,过点且斜率不为0的直线交于两点,点关于轴的对称点为,证明直线过定点,并求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车给市民出行带来了诸多便利,某公司购买了一批单车投放到某地给市民使用.据市场分析,每辆单车的营运累计收入 (单位:元)与营运天数满足.

(1)要使营运累计收入高于800元,求营运天数的取值范围;

(2)每辆单车营运多少天时,才能使每天的平均营运收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)从某校高一年级随机抽取名学生,获得了他们日平均睡眠时间(单位:小时)的数据,整理得到数据分组及频数分布表:

组号

分组

频数

频率

Ⅰ)求的值.

Ⅱ)若,补全表中数据,并绘制频率分布直方图.

Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,若上述数据的平均值为,求的值,并由此估计该校高一学生的日平均睡眠时间不少于小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰的底边,高,点是线段上异于点的动点,点边上,且,现沿将△折起到△的位置,使,记 表示四棱锥的体积.

(1)的表达式;(2)为何值时, 取得最大,并求最大值。

查看答案和解析>>

同步练习册答案