精英家教网 > 高中数学 > 题目详情

【题目】盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).

(1)求事件在一次试验中,得到的数为虚数”的概率与事件在四次试验中,

至少有两次得到虚数” 的概率

(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望

【答案】(1) (2)见解析

【解析】试题分析:(1)根据卡片上分别标有数﹣i,i,﹣2,2其中i是虚数单位,可求P(A),利用对立事件的概率公式,可求P(B);

(2)确定随机变量ξ=|ab|的取值,求出相应的概率,可得分布列与数学期望Eξ.

试题解析:

(1)∵卡片上分别标有数﹣i,i,﹣2,2其中i是虚数单位,

P(A)==

P(B)=1﹣P()=1﹣[]=1﹣=

(2)a,b,ξ的可能取值如下表所示:

由表可知:P(ξ=1)==,P(ξ=2)==,P(ξ=4)==

∴随机变量ξ的分布列为

Eξ=1×+2×+4×=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,在直角梯形中,分别是上的点,,且(如图①).将四边形沿折起,连接(如图②).在折起的过程中,则下列表述:

平面

②四点可能共面;

③若,则平面平面

④平面与平面可能垂直.其中正确的是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线.

(1)求以右焦点为圆心,与双曲线的渐近线相切的圆的方程;

(2)若经过点的直线与双曲线的右支交于不同两点,求线段的中垂线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科学研究证实,二氧化碳等温空气体的排放(简称碳排放)对全球气候和生态环境产生了负面影响,环境部门对市每年的碳排放总量规定不能超过万吨,否则将采取紧急限排措施.已知年的碳排放总量为万吨,通过技术改造和倡导低碳生活等措施,此后每年的碳排放量比上一年的碳排放总量减少.同时,因经济发展和人口增加等因素,每年又新增加碳排放量万吨.

1)求年的碳排放总量(用含的式子表示);

2)若市永远不需要采取紧急限排措施,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

1)若,求过点且与曲线相切的直线方程;

2)若函数有两个零点.

的取值范围;

求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,过点的直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为,记直线与曲线分别交于两点.

(1)求曲线的直角坐标方程;

(2)证明:成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角ABC所对的边分别为abc,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面积SsinC,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4 — 4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为).

1)分别写出直线的普通方程与曲线的直角坐标方程;

2)已知点,直线与曲线相交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,作棱锥,其中点在侧棱所在直线上,的中点.

1)证明:平面;

2)求为轴旋转所围成的几何体体积.

查看答案和解析>>

同步练习册答案