精英家教网 > 高中数学 > 题目详情
已知向量
a
=(3,4),
b
=(2,-1),如果向量
a
-x
b
b
垂直,则x的值为(  )
A、
23
3
B、
3
23
C、
2
5
D、-
2
5
考点:数量积判断两个平面向量的垂直关系
专题:平面向量及应用
分析:由向量
a
b
,表示出
a
-x
b
,由
a
-x
b
b
,得(
a
-x
b
)•
b
=0,从而求出x的值.
解答: 解:∵向量
a
=(3,4),
b
=(2,-1),
a
-x
b
=(3-2x,4+x);
又∵
a
-x
b
b

∴(
a
-x
b
)•
b
=0,
即2(3-2x)-(4+x)=0,
解得x=
2
5

故选:C.
点评:本题考查了平面向量的应用问题,解题时应用平面向量的数量积运算性质进行解答,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若方程x2+2xy+ay2+3x+9y=0表示两条直线,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“在一个三角形的三个内角中,至少有2个锐角”时,假设命题的结论不成立的正确叙述是“在一个三角形的三个内角中,
 
个锐角”.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列A:a1,a2,…an(n>2),记集合TA={x|x=ai+aj,1≤i<j≤n},则当数列A:2,4,6,8,10时,集合TA的元素个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx+c在x=-
2
3
与x=1时都取得极值,若对?x∈[-1,2],不等式f(x)<c2恒成立,则c的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将偶数按如图所示的规律排列下去,且用amn表示位于从上到下第m行,从左到右n列的数,比如a22=6,a43=18,若amn=2014,则有(  )
 
A、m=44,n=16
B、m=44,n=29
C、m=45,n=16
D、m=45,n=29

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是(  )
A、(-∞,3]
B、(-∞,5]
C、[3,+∞)
D、[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若α为锐角且cos(α+
π
4
)=
3
5
,则cosα=(  )
A、
2
5
B、
6
2
5
C、
5
5
D、
7
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={-2,-1},B={x|(x+1)(x-2)<0},则A∩∁UB=(  )
A、{-2,-1}
B、{-2,1}
C、{-1,1}
D、{-2,-1,1}

查看答案和解析>>

同步练习册答案