【题目】已知函数 .
(Ⅰ)当a>0时,求函数f(x)的单调递减区间;
(Ⅱ)当a=0时,设函数g(x)=xf(x)﹣k(x+2)+2.若函数g(x)在区间 上有两个零点,求实数k的取值范围.
【答案】(1)见解析(2)
【解析】试题分析:(1)先求函数导数,根据导函数零点讨论导函数符号,进而确定单调减区间(2)先利用分参法将方程零点转化为研究函数 值域,利用导数研究函数单调性,最后根据单调性确定函数值域
试题解析:解:(Ⅰ)f(x)的定义域为(0,+∞),
f(x)的导数为f′(x)=﹣ax+1+a﹣=﹣(a>0),
①当a∈(0,1)时,.
由f'(x)<0,得或x<1.
当x∈(0,1),时,f(x)单调递减.
∴f(x)的单调递减区间为(0,1),;
②当a=1时,恒有f'(x)≤0,∴f(x)单调递减.
∴f(x)的单调递减区间为(0,+∞);
③当a∈(1,+∞)时,.
由f'(x)<0,得x>1或.
∴当,x∈(1,+∞)时,f(x)单调递减.
∴f(x)的单调递减区间为,(1,+∞).
综上,当a∈(0,1)时,f(x)的单调递减区间为(0,1),;
当a=1时,f(x)的单调递减区间为(0,+∞);
当a∈(1,+∞)时,f(x)的单调递减区间为,(1,+∞).
(Ⅱ)g(x)=x2﹣xlnx﹣k(x+2)+2在上有零点,
即关于x的方程在上有两个不相等的实数根.
令函数.
则.
令函数.
则在上有p'(x)≥0.
故p(x)在上单调递增.
∵p(1)=0,∴当时,有p(x)<0即h'(x)<0.∴h(x)单调递减;
当x∈(1,+∞)时,有p(x)>0即h'(x)>0,∴h(x)单调递增.
∵,h(1)=1,,
∴k的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,a2=2,an+2=(1+cos2 )an+sin2 ,则该数列的前12项和为( )
A.211
B.212
C.126
D.147
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数y=f(x)的图象过点 .
(1)求函数f(x)的解析式
(2)记g(x)=f(x)+x , 判断g(x)在(1,+∞)上的单调性,并证明之.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下:
若以上表中频率作为概率,且每天的销售量相互独立.
(1)求5天中该种商品恰好有两天的日销售量为1.5吨的概率;
(2)已知每吨该商品的销售利润为2千元, 表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+ax2+b满足f(1)=0,且在x=2时函数取得极值.
(1)求a,b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)在区间[0,t](t>0)上的最大值g(t)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线交于两点, 是的中点,过作轴的垂线交于点.
(1)证明:抛物线在点处的切线与平行;
(2)是否存在实数,使以为直径的圆经过点?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=ax3﹣x2+cx(a≠0)的图象如图所示,它与x轴仅有两个公共点O(0,0)与A(xA , 0)(xA>0);
(1)用反证法证明常数c≠0;
(2)如果 ,求函数的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com