精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C)过点,短轴一个端点到右焦点的距离为2

1)求椭圆C的方程;

2)设过定点的直线1与椭圆交于不同的两点AB,若坐标原点O在以线段AB为直径的圆上,求直线l的斜率k

【答案】1;(2

【解析】

1通过短轴的一个端点到右焦点的距离为2可知,且椭圆过点,得到方程组,解得

2)设直线方程为,通过以线段为直径的圆过坐标原点可知,通过联立直线与椭圆方程、利用韦达定理化简,进而计算可得结论;

解:(1)由题意可得

解得:

椭圆的方程为

2)由题意知,直线的斜率存在,设过的直线方程为

联立,消去、整理得:

因为直线与椭圆有两个交点,

解得

以线段为直径的圆过坐标原点

,即

,解得:满足条件,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线L: y=x+m与抛物线y2=8x交于A、B两点(异于原点)

(1)若直线L过抛物线焦点,求线段 |AB|的长度;

(2)若OA⊥OB ,求m的值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若数列满足:对所有,且当时,,则称为“数列”,设R,函数,数列满足).

(1)若,而数列,求的值;

(2)设,证明:存在,使得数列,但对任意都不是数列;

(3)设,证明:对任意,都存在,使得数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为为参数以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,且圆心C在直线l上.

求直线l的直角坐标方程及圆C的极坐标方程;

是直线l上一点,是圆C上一点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为,它的一个顶点为,离心率.

(1)求椭圆的方程;

(2)设直线与椭圆交于 两点,坐标原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中的项按顺序可以排列成如图的形式,第一行项,排;第二行项,从左到右分别排;第三行项,……以此类推,设数列的前项和为,则满足的最小正整数的值为( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):

季度

季度编号x

销售额y(百万元)

1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;

2)求关于的线性回归方程,并预测该公司的销售额.

附:线性回归方程:其中

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知平面为等边三角形,与平面所成角的正切值为.

(Ⅰ)证明:平面

(Ⅱ)若的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:

并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:

愿意购买这款电视机

不愿意购买这款电视机

总计

40岁以上

800

1000

40岁以下

600

总计

1200

(1)根据图中的数据,试估计该款电视机的平均使用时间;

(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;

(3)若按照电视机的使用时间进行分层抽样,从使用时间在的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在内的概率.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案