精英家教网 > 高中数学 > 题目详情

已知a>b,c>d,且a,b,c,d均不为0,那么下列不等式成立的是


  1. A.
    ac>bd
  2. B.
    ad>bc
  3. C.
    a-c>b-d
  4. D.
    a+c>b+d
D
分析:a>b,c>d,根据不等式的性质即可得到答案.
解答:令a=2,b=-2,c=3,d=-6,
则2×3<(-5)(-6)=30,可排除A
2×(-6)<(-2)×3可排除B;
2-3<(-2)-(-6)=4可排除C,
∵a>b,c>d,
∴a+c>b+d(不等式的加法性质)正确.
故选D.
点评:本题考查不等式的基本性质,对于选择题,可充分利用特值法的功能,迅速排除,做到节时高效,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、给出如下四个命题:
①对于任意一条直线a,平面α内必有无数条直线与a垂直;
②若α、β是两个不重合的平面,l、m是两条不重合的直线,则α∥β的一个充分而不必要条件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四条不重合的直线,如果a⊥c,a⊥d,b⊥c,b⊥d,则“a∥b”与“c∥d”不可能都不成立;
④已知命题P:若四点不共面,那么这四点中任何三点都不共线.
则命题P的逆否命题是假命题上命题中,正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d都是正数,S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,则S的取值范围是
(1,2)
(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>b,c>d,且a,b,c,d均不为0,那么下列不等式成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C、D四点不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,则四边形EFGH是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c,d是实数,用分析法证明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步练习册答案