分析 (1)将条件变形可得$\frac{{a}_{n}}{n+1}$=$\frac{3{a}_{n-1}}{n}$,再由等比数列的定义,即可得证;
(2)运用等比数列的通项公式,可得an,由题意可得2-λ>$\frac{3n-5}{{3}^{n}}$恒成立,构造数列令f(n)=$\frac{3n-5}{{3}^{n}}$,求得单调性,可得最大值,即可得到所求范围.
解答 (1)证明:当n≥2时,$\frac{1}{3}$an=an-1+$\frac{1}{n}$an-1.
即有an=3an-1+$\frac{3{a}_{n-1}}{n}$=$\frac{3{a}_{n-1}(n+1)}{n}$,
即为$\frac{{a}_{n}}{n+1}$=$\frac{3{a}_{n-1}}{n}$,
则数列{$\frac{{a}_{n}}{n+1}$}是首项为$\frac{{a}_{1}}{2}$=3,公比为3的等比数列;
(2)解:由(1)可得$\frac{{a}_{n}}{n+1}$=3n,即an=(n+1)•3n,
不等式3n2-2n-5<(2-λ)an恒成立,即为
(3n-5)(n+1)<(2-λ)(n+1)•3n,
即有2-λ>$\frac{3n-5}{{3}^{n}}$恒成立,
令f(n)=$\frac{3n-5}{{3}^{n}}$,n=1时,f(1)=-$\frac{2}{3}$,
n>1时,f(n+1)-f(n)=$\frac{3n-2}{{3}^{n+1}}$-$\frac{3n-5}{{3}^{n}}$=$\frac{13-6n}{{3}^{n+1}}$,
即有n=1,2时,f(3)>f(2)>f(1),
当n≥3时,f(n+1)<f(n)<…<f(3),
即有f(3)取得最大值,且为$\frac{4}{27}$,
则2-λ>$\frac{4}{27}$,解得λ<$\frac{50}{27}$.
即有λ的取值范围是(-∞,$\frac{50}{27}$).
点评 本题考查的等比数列的定义和通项公式的运用,考查数列的单调性的判断和运用,同时考查不等式的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2016-2017学年河北冀州市高二文上月考三数学试卷(解析版) 题型:选择题
如图是计算的值的一个程序框图,其中判断框内应填入的条件是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com