精英家教网 > 高中数学 > 题目详情
椭圆的离心率.

(1)求椭圆C的方程;
(2)如图,是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交轴于点N,直线AD交BP于点M。设BP的斜率为,MN的斜率为.证明:为定值。
(1)   (2)见解析
(1)
由(1)知A(-2,0),B(2,0),D(0,1),则直线AD方程为:;直线BP方程:,联立得直线BP和椭圆联立方程组解得P点坐标为,因为D,N(x,0),P三点共线,所以有:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆.
(1)我们知道圆具有性质:若为圆O:的弦AB的中点,则直线AB的斜率与直线OE的斜率的乘积为定值。类比圆的这个性质,写出椭圆的类似性质,并加以证明;
(2)如图(1),点B为在第一象限中的任意一点,过B作的切线分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值;
(3)如图(2),过椭圆上任意一点的两条切线PM和PN,切点分别为M,N.当点P在椭圆上运动时,是否存在定圆恒与直线MN相切?若存在,求出圆的方程;若不存在,请说明理由.
    
图(1)                                    图(2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,点在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于两点,点是线段上的一点,且点在直线上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴的椭圆 的左、右焦点分别为,直线过右焦点,和椭圆交于两点,且满足,则椭圆的标准方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)过点,且椭圆的离心率为
(1)求椭圆的方程;
(2)若动点在直线上,过作直线交椭圆两点,且为线段中点,再过作直线.求直线是否恒过定点,如果是则求出该定点的坐标,不是请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,椭圆的中心为原点,焦点轴上,离心率为。过的直线L交C于两点,且的周长为16,那么的方程为     

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为(   )
A.2
B.3
C.6
D.8

查看答案和解析>>

同步练习册答案