精英家教网 > 高中数学 > 题目详情

【题目】为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此中元素的含量不小于18毫克时,该产品为优等品.

(1)试用样品数据估计甲、乙两种产品的优等品率;

(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件,求事件的概率.

【答案】(1)(2)见解析(3)

【解析】试题分析:(1)根据茎叶图统计优等品的个数比上总数即可得解

(2)易知优等品数服从超几何分布,的所有可能取值为,分别求概率即可,由期望公式计算期望即可

(3)抽到的优等品中,甲产品恰比乙产品多件包括两种情况:“抽到的优等品数甲产品件且乙产品件”,“抽到的优等品数甲产品件且乙产品件”,分别求概率相加即可.

试题解析:

1从甲产品抽取的件样品中优等品有件,优等品率为

从乙产品抽取的件样品中优等品有件,优等品率为

故甲、乙两种产品的优等品率分别为

2的所有可能取值为

所以的分布列为

1

3抽到的优等品中,甲产品恰比乙产品多件包括两种情况:“抽到的优等品数甲产品件且乙产品件”,“抽到的优等品数甲产品件且乙产品件”,分别记为事件

0

0

故抽到的优等品中甲产品恰比乙产品多件的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线a与平面所成角的为30o,直线b在平面且与b异面,若直线a与直线b所成的角为,则( )

A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018甘肃兰州市高三一诊已知圆 ,过且与圆相切的动圆圆心为

I)求点的轨迹的方程;

II)设过点的直线交曲线 两点,过点的直线交曲线 两点,且,垂足为 为不同的四个点).

,证明:

求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,相交于点,三棱锥的体积为9.

(1)求的值;

(2)过点的平面平行于平面与棱分别相交于点,求截面的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系中,曲线的参数方程是为参数,),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点依逆时针次序排列,点的极坐标为.

(1)求点的直角坐标;

(2)设上任意一点,求点到直线距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的参数方程为为参数),曲线的极坐标方程为.

(1)写出直线的普通方程和曲线的直角坐标方程;

(2)若点的坐标为,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与四边形相交于平面的中点,.

(1)求证:平面

(2)求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点

(1)证明:点在定直线上;

(2)当最大时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)求函数的零点个数;

(Ⅱ)证明: 是函数存在最小值的充分而不必要条件.

查看答案和解析>>

同步练习册答案