精英家教网 > 高中数学 > 题目详情

【题目】F1、F2为椭圆的两个焦点,以F2为圆心作圆F2 , 已知圆F2经过椭圆的中心,且与椭圆相交于M点,若直线MF1恰与圆F2相切,则该椭圆的离心率e为(  )
A. ﹣1
B.2﹣
C.
D.

【答案】A
【解析】解:易知圆F2的半径为c,又直线MF1恰与圆F2相切,∠F1MF2是直角,

∵|F1F2|=2c,|MF2|=c,|F1M|=2a﹣c,

∴在直角三角形F1MF2中有

(2a﹣c)2+c2=4c2

即( 2+2( )﹣2=0,

∴e= = ﹣1.

所以答案是:A

【考点精析】通过灵活运用椭圆的概念和直线与圆的三种位置关系,掌握平面内与两个定点的距离之和等于常数(大于)的点的轨迹称为椭圆,这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距;直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 ,使得 .若“ 为真”,“ 为假”,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的奇函数,且其图象关于直线 对称,当 时, ,则 的值为( )
A.
B.0
C.1
D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,已知直线 ( )和圆 .圆 与直线 的交点为 .
(1)求圆 的直角坐标方程,并写出圆 的圆心与半径.
(2)求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一天二十四小时内到达该码头的时刻是等可能的.如果甲船停泊时间为1小时,乙船停泊时间为2小时,求它们中的任意一艘都不需要等待码头空出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在人群流量较大的街道,有一中年人吆喝送钱,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.

1)摸出的3个球为白球的概率是多少?

2)摸出的3个球为2个黄球1个白球的概率是多少?

3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查,得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:K2= ,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四面体ABCD中,M,N分别是BC和DA的中点,则异面直线MN和CD所成角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体 中, 的中点, 上,且 ,点 是侧面 (包括边界)上一动点,且 平面 ,则 的取值范围是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案