精英家教网 > 高中数学 > 题目详情

【题目】某校在高一年级一班至六班进行了社团活动满意度调查(结果只有满意不满意两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:

班号

一班

二班

三班

四班

五班

六班

频数

4

5

11

8

10

12

满意人数

3

2

8

5

6

6

现从一班和二班调查对象中随机选取4人进行追踪调查,则选中的4人中恰有2人不满意的概率为___________;若将以上统计数据中学生持满意态度的频率视为概率,在高一年级全体学生中随机抽取3名学生,记其中满意的人数为X,则随机变量X的数学期望是___________

【答案】

【解析】

第一空:利用古典概型的概率公式计算即可;
第二空:X的所有可能取值为0123,求出分布列,进而通过数学期望计算公式即可得出.

解:第一空:从一班和二班调查对象中随机选取4人进行追踪调查,则选中的4人中恰有2人不满意的概率为

第二空:在高一年级全体学生中随机抽取1名学生,

其满意概率为

X的所有可能取值为0123

分布列如下:

0

1

2

3

.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,底面ABCD为菱形,∠ABC60°AA1ABMN分别为ABAA1的中点.

1)求证:平面B1NC⊥平面CMN

2)若AB2,求点N到平面B1MC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求函数的单调区间;

2)若方程在区间内有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线的普通方程和直线的直角坐标方程;

2)已知点,点为曲线上的动点,求线段的中点到直线的距离的最大值.并求此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,其中.

1)若,判断的单调性;

2)当,设函数在区间上恰有一个零点,求正数a的取值范围;

3)当时,证明:对于,有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过点,且该椭圆的短轴端点与两焦点的张角为直角.

1)求椭圆E的方程;

2)过点且斜率大于0的直线与椭圆E相交于点PQ,直线APAQy轴相交于MN两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国是茶的故乡,也是茶文化的发源地.中国茶的发现和利用已有四千七百多年的历史,且长盛不衰,传遍全球.为了弘扬中国茶文化,某酒店推出特色茶食品金萱排骨茶,为了解每壶金萱排骨茶中所放茶叶量克与食客的满意率的关系,通过试验调查研究,发现可选择函数模型来拟合的关系,根据以下数据:

茶叶量

1

2

3

4

5

4.34

4.36

4.44

4.45

4.51

可求得y关于x的回归方程为(

A.B.

C.D.

查看答案和解析>>

同步练习册答案