精英家教网 > 高中数学 > 题目详情

【题目】已知数列 ,…,Sn是其前n项和,计算S1、S2、S3 , 由此推测计算Sn的公式,并给出证明.

【答案】解:S1= =

S2= + = (1﹣ )+ )=

S3= + + = (1﹣ + + )= (1﹣ )=

可得

猜测 (n∈N*).

(方法一)用数学归纳法证明:

当n=1时,S1= = ,猜想成立;

假设当n=k(k∈N*)时猜想成立.即Sk=

那么当n=k+1时,有

= =

所以,当n=k+1时,猜想也成立.

综上,对任意n∈N*,猜想成立.

(方法二)由 = ),

可得Sn= + +…+ +

= (1﹣ + +…+ +

= (1﹣ )=


【解析】直接计算可得S1、S2、S3,由此猜测 (n∈N*).运用数学归纳法和裂项相消求和,即可得到结论.
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=ax2+2x﹣3在区间(﹣∞,4)上是单调递增的,则实数a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)用“五点法”在如图所示的虚线方框内作出函数在一个周期内的简图(要求:列表与描点,建立直角坐标系);

(2)函数的图像可以通过函数的图像经过“先伸缩后平移”的规则变换而得到,请写出一个这样的变换!

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如表:

调查统计

不喜欢语文

喜欢语文

13

10

7

20

为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k= ≈4.844,因为k≥3.841,根据下表中的参考数据:

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为(
A.95%
B.50%
C.25%
D.5%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2+1. (Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(x)cos(x),g(x)=sin 2x.

(1)求函数f(x)的最小正周期;

(2)求函数h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

同步练习册答案