精英家教网 > 高中数学 > 题目详情
已知圆C(圆心为原点)与直线l,从l与C上各取2个点,将其坐标记录于下表中:
(1)求圆C与直线l的方程;
(2)设表中直线l上的两个点为A,B,试探究在圆C上是否存在点P,使得|PA|=|PB|?若不存在请说明理由,若存在,请指出共有几个这样的点(不必具体求出这些点的坐标)。
解:(1)因为圆上的点必满足,故只能是在圆上,
得圆C方程为
则(-2,2),(3,1)在直线上,易得直线的方程为x+5y-8=0;
(2)不妨设l上两点为A(-2,2),B(3,1),设P(x,y),易得线段AB的垂直平分线方程为5x-y-1=0,
由点到直线的距离公式可得圆心到该直线的距离为,故该直线与圆有2个不同交点,这两个点都满足|PA|=|PB|;
综上可知存在2个点使得|PA|=|PB。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的圆心为原点O,且与直线x+y+4
2
=0
相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建师大附中高一第二学期模块考试数学 题型:解答题

(本小题满分12分)

已知圆C的圆心为原点O,且与直线x+y+=0相切.

(1)求圆C的方程;

(2)点P在直线x=8上,过P点引圆C的两条切线PA、PB,切点为A、B,求证:直线AB恒过定点.

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河北省衡水中学高一(上)期末数学试卷(理科)(解析版) 题型:解答题

已知圆C的圆心为原点O,且与直线相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省云浮市罗定市高二(上)期中质量检测数学试卷(文科)(解析版) 题型:解答题

已知圆C的圆心为原点O,且与直线相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.

查看答案和解析>>

同步练习册答案