精英家教网 > 高中数学 > 题目详情

已知函数,.
(1)求的单调区间;
(2)当时,若对于任意的,都有成立,求的取值范围.

(1)当时函数上单调递减,在上单调递增;当时函数上单调递增,在上单调递减。(2)

解析试题分析:(1)先求导可得,讨论导数再其定义域内的正负,导数正得增区间,导数负得减区间。讨论导数符号问题时应注意对正负的讨论。(2)将问题转化为当时,对于任意的恒成立。令,先求导,再讨论导数的正负,从而得函数的单调性,根据单调性求函数的最值,使其最小值大于等于0即可。
解:(1)函数的定义域为.                                  1分
因为,                             2分
,解得.                                      3分
时, 随着变化时,的变化情况如下:

即函数上单调递减,在上单调递增.        5分
时, 随着变化时,的变化情况如下:

即函数上单调递增,在上单调递减.       7分
(2)当时,对于任意的,都有成立,
.
所以.
.                            
因为,                      8分
,解得.                                  9分
因为
所以随着变化时,的变化情况如下:

即函数上单调递增,在上单调递减.        10分
所以.             11分
所以.
所以.                                                12分
所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

一物体沿直线以速度的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(13分)(2011•重庆)设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R.
(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)e﹣x.求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若曲线与曲线在它们的交点处的切线互相垂直,求的值;
(2)设,若对任意的,且,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数).
(1)函数的图象在点处的切线与函数的图象相切,求实数的值;
(2)若使得成立,求满足上述条件的最大整数
(3)当时,若对于区间内的任意两个不相等的实数,都有
成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,证明:当时,
(2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最大值;
(2)若,求的取值范围.
(3)证明:  +(n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R
(1)若x=e为y=f(x)的极值点,求实数a;
(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.
注:e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设L为曲线C:y=在点(1,0)处的切线.
(1)求L的方程;
(2)证明:除切点(1,0)之外,曲线C在直线L的下方.

查看答案和解析>>

同步练习册答案