精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)当时,求的极值;

(2)若有2个不同零点,求的取值范围.

【答案】(1) (2)

【解析】

1)当时,,令,对x分类讨论,可得的单调性,即可求解。

(2)对分类讨论,当 0时,只有一个零点,时,根据的单调性,结合零点与方程思想,即可求解。

(1)当时,

为增函数,

为减函数,

为增函数

(2)

时,,只有一个零点;不满足题意。

时,

为减函数,

为增函数,

时,

所以,使

时,

所以,即

函数有2个零点

时,,令

,即时,当变化时变化情况是

递增

递减

递增

函数至多有一个零点,不符合题意;

时,,则单调递增,

至多有一个零点,不合题意

,即时,当变化 时的变化情况是

递增

递减

递增

时,

函数至多有一个零点

综上,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查某省高三男生身高情况,现从某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm187.5cm之间,将测量结果按如下方式分成6组:第一组,第二组,第六组,下图是按照上述分组方法得到的频率分布直方图.

1)求该学校高三年级男生的平均身高;

2)利用分层抽样的方式从这50名男生中抽出20人,求抽出的这20人中,身高在177.5cm以上(含177.5cm)的人数;

3)从根据(2)选出的身高在177.5cm以上(含177.5cm)的男生中任意抽取2人,求此二人来自于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PA3PBPCABAC2BC

1)求二面角BAPC大小的余弦值;

2)求点P到底面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线恒过定点,过点引圆的两条切线,设切点分别为.

1)求直线的一般式方程;

2)求四边形的外接圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场).随机抽取50名学生进行调查,将数据分组整理后,列表如下:

参加场数

0

1

2

3

4

5

6

7

占调查人数的百分比

8%

10%

20%

26%

18%

m%

4%

2%

则以下四个结论中正确的是( )

A.表中m的数值为10

B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108人

C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216人

D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某闯关游戏共有两关,游戏规则:先闯第一关,当第一关闯过后,才能进入第二关,两关都闯过,则闯关成功,且每关各有两次闯关机会.已知闯关者甲第一关每次闯过的概率均为,第二关每次闯过的概率均为.假设他不放弃每次闯关机会,且每次闯关互不影响.

(1)求甲恰好闯关3次才闯关成功的概率;

(2)记甲闯关的次数为,求随机变量的分布列和期望.。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为为椭圆的左右顶点,为椭圆上不同于.的动点,直线与直线分别交于两点,若,则过三点的圆必过轴上不同于点的定点,其坐标为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD为菱形,,侧面为等腰直角三角形,,点E为棱AD的中点.

1)求证:平面ABCD

2)求直线AB与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )

A. B. C. D.

查看答案和解析>>

同步练习册答案